Effect of TiN monolithic and Ti/TiN multilayer coating on the fatigue behavior of titanium alloy under tension-tension

Zhaolu Zhang, Minglei Yang, Guangyu He
{"title":"Effect of TiN monolithic and Ti/TiN multilayer coating on the fatigue behavior of titanium alloy under tension-tension","authors":"Zhaolu Zhang, Minglei Yang, Guangyu He","doi":"10.1016/j.jmrt.2024.07.105","DOIUrl":null,"url":null,"abstract":"This paper investigates the fatigue failure mechanism of mono- and multilayer coatings on the fatigue performance of TC11 titanium alloy under tension-tension. The morphology, phase composition, mechanical properties were measured by scanning electron microscope, X-ray diffractometer and nanoindentation. Electron back scatter diffraction was employed to investigated the failure mechanism. Fatigue limits obtained of uncoated TC11, TC11 with TiN coating, TiN/Ti multilayer (ML-6, ML-3, ML-1) and after 1 × 10 cycles are 855 MPa, 550 MPa, 525 MPa, 500 MPa and 400 MPa. Under fatigue loading, the hard-coating/TC11 substrate experiences fatigue failure through coating cracking hastens the substrate's fatigue failure. EBSD analysis results indicate that the main slip system of TC11 titanium alloy under tension-tension fatigue load is α phase (10-10)[-12-10]. After 1 × 10 cycles at fatigue limits, the average dislocation density on the surface of the TC11 with TiN coating is lower than that of TC11. Due to the surface defect induced by coating preparation and high crack propagation velocity, the hard coating significantly deteriorates fatigue property of TC11 by reducing fatigue crack initiation period. Therefore, instead of approaching from the perspective of coating structure design to increase the fatigue crack propagation cycles, it is more effective to reduce the surface roughness of the coating and enhance the fatigue crack initiation cycles.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the fatigue failure mechanism of mono- and multilayer coatings on the fatigue performance of TC11 titanium alloy under tension-tension. The morphology, phase composition, mechanical properties were measured by scanning electron microscope, X-ray diffractometer and nanoindentation. Electron back scatter diffraction was employed to investigated the failure mechanism. Fatigue limits obtained of uncoated TC11, TC11 with TiN coating, TiN/Ti multilayer (ML-6, ML-3, ML-1) and after 1 × 10 cycles are 855 MPa, 550 MPa, 525 MPa, 500 MPa and 400 MPa. Under fatigue loading, the hard-coating/TC11 substrate experiences fatigue failure through coating cracking hastens the substrate's fatigue failure. EBSD analysis results indicate that the main slip system of TC11 titanium alloy under tension-tension fatigue load is α phase (10-10)[-12-10]. After 1 × 10 cycles at fatigue limits, the average dislocation density on the surface of the TC11 with TiN coating is lower than that of TC11. Due to the surface defect induced by coating preparation and high crack propagation velocity, the hard coating significantly deteriorates fatigue property of TC11 by reducing fatigue crack initiation period. Therefore, instead of approaching from the perspective of coating structure design to increase the fatigue crack propagation cycles, it is more effective to reduce the surface roughness of the coating and enhance the fatigue crack initiation cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiN 单层和 Ti/TiN 多层涂层对钛合金拉伸疲劳行为的影响
本文研究了单层和多层涂层对 TC11 钛合金拉伸疲劳性能的影响。通过扫描电子显微镜、X 射线衍射仪和纳米压痕测量了涂层的形貌、相组成和力学性能。电子背散射衍射用于研究失效机理。未涂层 TC11、TiN 涂层 TC11、TiN/Ti 多层(ML-6、ML-3、ML-1)和 1 × 10 循环后的疲劳极限分别为 855 兆帕、550 兆帕、525 兆帕、500 兆帕和 400 兆帕。在疲劳加载条件下,硬涂层/TC11 基体通过涂层开裂加速基体的疲劳失效。EBSD 分析结果表明,TC11 钛合金在拉伸-张力疲劳载荷下的主要滑移体系是 α 相(10-10)[-12-10]。在疲劳极限循环 1 × 10 次后,TiN 涂层 TC11 表面的平均位错密度低于 TC11。由于涂层制备引起的表面缺陷和较高的裂纹扩展速度,硬涂层通过缩短疲劳裂纹起始周期而显著降低了 TC11 的疲劳性能。因此,与其从涂层结构设计的角度出发来提高疲劳裂纹扩展周期,不如降低涂层表面粗糙度来提高疲劳裂纹萌发周期更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1