Exceptional strength-ductility synergy in additively manufactured (CoCrNi)90Al5Ti5 medium-entropy alloy by heat treatment

Jinle Luo, Haojie Lu, Ming Wen, Shengguo Ma, Xizhang Chen
{"title":"Exceptional strength-ductility synergy in additively manufactured (CoCrNi)90Al5Ti5 medium-entropy alloy by heat treatment","authors":"Jinle Luo, Haojie Lu, Ming Wen, Shengguo Ma, Xizhang Chen","doi":"10.1016/j.jmrt.2024.07.106","DOIUrl":null,"url":null,"abstract":"Powder Plasma Arc Additive Manufacturing (PPA-AM) technique has tremendous potential for the practical application in medium-entropy alloys (MEAs). In this study, we investigated the effect of heat treatment on microstructural evolution, mechanical properties, and the work hardening behavior in the PPA-AM processed (CoCrNi)AlTi MEA. The results show that the As-built specimen is a single-phase FCC structure, displaying <001> strong FCC texture in the deposition direction. The stacking faults (SFs) and dislocations were observed in the alloy, which formed the stacking fault networks and the Lomer-Cottrell locks structure. The plasticity of the alloy increased significantly after the high-temperature heat treatment, which can be attributed to the modifications of the microstructure, such as the weakening of the texture strength and the reduction of the stresses. Low-temperature heat treatment decreases the density of dislocations in the alloy, but promotes the generation of the co-lattice phase. The evolution of the dislocation density, texture strength, and precipitates significantly influenced the strain hardening behavior and mechanical properties. The tensile results showed that the strength and plasticity of the samples were increased after two-step heat treatment. The yield strength, ultimate tensile strength, and elongation to failure were 733 MPa, 1080 MPa, and 22.3%, respectively, which were 16.2%, 20.3%, and 15.5% higher than the As-built samples. This work elucidates the underlying mechanisms of heat treatment on the microstructure and mechanical properties of the alloy.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Powder Plasma Arc Additive Manufacturing (PPA-AM) technique has tremendous potential for the practical application in medium-entropy alloys (MEAs). In this study, we investigated the effect of heat treatment on microstructural evolution, mechanical properties, and the work hardening behavior in the PPA-AM processed (CoCrNi)AlTi MEA. The results show that the As-built specimen is a single-phase FCC structure, displaying <001> strong FCC texture in the deposition direction. The stacking faults (SFs) and dislocations were observed in the alloy, which formed the stacking fault networks and the Lomer-Cottrell locks structure. The plasticity of the alloy increased significantly after the high-temperature heat treatment, which can be attributed to the modifications of the microstructure, such as the weakening of the texture strength and the reduction of the stresses. Low-temperature heat treatment decreases the density of dislocations in the alloy, but promotes the generation of the co-lattice phase. The evolution of the dislocation density, texture strength, and precipitates significantly influenced the strain hardening behavior and mechanical properties. The tensile results showed that the strength and plasticity of the samples were increased after two-step heat treatment. The yield strength, ultimate tensile strength, and elongation to failure were 733 MPa, 1080 MPa, and 22.3%, respectively, which were 16.2%, 20.3%, and 15.5% higher than the As-built samples. This work elucidates the underlying mechanisms of heat treatment on the microstructure and mechanical properties of the alloy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热处理在添加式制造的 (CoCrNi)90Al5Ti5 中熵合金中实现优异的强度-韧性协同效应
粉末等离子弧快速成型(PPA-AM)技术在中熵合金(MEA)的实际应用中具有巨大潜力。在本研究中,我们研究了热处理对 PPA-AM 加工 (CoCrNi)AlTi MEA 的微观结构演变、力学性能和加工硬化行为的影响。结果表明,As-bilt 试样为单相 FCC 结构,在沉积方向上显示出强烈的 FCC 纹理。合金中出现了堆积断层(SFs)和位错,形成了堆积断层网络和 Lomer-Cottrell 锁状结构。高温热处理后合金的塑性明显提高,这可能是由于微观结构发生了改变,如纹理强度减弱和应力降低。低温热处理降低了合金中的位错密度,但促进了共格相的生成。位错密度、组织强度和析出物的演变对应变硬化行为和机械性能有显著影响。拉伸结果表明,经过两步热处理后,样品的强度和塑性都有所提高。屈服强度、极限拉伸强度和破坏伸长率分别为 733 兆帕、1080 兆帕和 22.3%,比原样分别高出 16.2%、20.3% 和 15.5%。这项工作阐明了热处理对合金微观结构和机械性能的潜在影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1