Giulio Onori, Asad Ali Shahid, Francesco Braghin, Loris Roveda
{"title":"Adaptive Optimization of Hyper-Parameters for Robotic Manipulation through Evolutionary Reinforcement Learning","authors":"Giulio Onori, Asad Ali Shahid, Francesco Braghin, Loris Roveda","doi":"10.1007/s10846-024-02138-8","DOIUrl":null,"url":null,"abstract":"<p>Deep Reinforcement Learning applications are growing due to their capability of teaching the agent any task autonomously and generalizing the learning. However, this comes at the cost of a large number of samples and interactions with the environment. Moreover, the robustness of learned policies is usually achieved by a tedious tuning of hyper-parameters and reward functions. In order to address this issue, this paper proposes an evolutionary RL algorithm for the adaptive optimization of hyper-parameters. The policy is trained using an on-policy algorithm, Proximal Policy Optimization (PPO), coupled with an evolutionary algorithm. The achieved results demonstrate an improvement in the sample efficiency of the RL training on a robotic grasping task. In particular, the learning is improved with respect to the baseline case of a non-evolutionary agent. The evolutionary agent needs <span>\\(60\\)</span>% fewer samples to completely learn the grasping task, enabled by the adaptive transfer of knowledge between the agents through the evolutionary algorithm. The proposed approach also demonstrates the possibility of updating reward parameters during training, potentially providing a general approach to creating reward functions.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"41 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02138-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Reinforcement Learning applications are growing due to their capability of teaching the agent any task autonomously and generalizing the learning. However, this comes at the cost of a large number of samples and interactions with the environment. Moreover, the robustness of learned policies is usually achieved by a tedious tuning of hyper-parameters and reward functions. In order to address this issue, this paper proposes an evolutionary RL algorithm for the adaptive optimization of hyper-parameters. The policy is trained using an on-policy algorithm, Proximal Policy Optimization (PPO), coupled with an evolutionary algorithm. The achieved results demonstrate an improvement in the sample efficiency of the RL training on a robotic grasping task. In particular, the learning is improved with respect to the baseline case of a non-evolutionary agent. The evolutionary agent needs \(60\)% fewer samples to completely learn the grasping task, enabled by the adaptive transfer of knowledge between the agents through the evolutionary algorithm. The proposed approach also demonstrates the possibility of updating reward parameters during training, potentially providing a general approach to creating reward functions.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).