Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-07-25 DOI:10.1007/s10846-024-02153-9
Petr Dolezel, Dominik Stursa, Dusan Kopecky
{"title":"Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking","authors":"Petr Dolezel, Dominik Stursa, Dusan Kopecky","doi":"10.1007/s10846-024-02153-9","DOIUrl":null,"url":null,"abstract":"<p>Picking up non-trivial objects from a bin with a robotic arm is a common task of modern industrial processes. Here, an efficient data-driven method of grasping point detection, based on an attention squeeze parallel U-shaped neural network (ASP U-Net) for the bin picking task, is proposed. The method directly provides all necessary information about the feasible grasping points of objects, which are randomly or regularly arranged in a bin with side walls. Moreover, the method is able to evaluate and select the optimal grasping point among the feasible ones for two types of end effectors, i.e., a vacuum cup and a parallel gripper. The key element of the utilized ASP U-Net neural network is the transformation of a single RGB-Depth image of the bin containing nontrivial objects into a schematic grey-scale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. The experiments carried out in this study include a comprehensive set of scenes with randomly scattered, ordered, and semi-ordered objects arranged in impeccable or deformed bins. The results indicate outstanding accuracy with more than acceptable computational requirements. Additionally, the scaling possibilities of the method can offer extremely lightweight implementations, applicable, for example, to battery-powered edge-computing devices with low RAM capacity.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02153-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Picking up non-trivial objects from a bin with a robotic arm is a common task of modern industrial processes. Here, an efficient data-driven method of grasping point detection, based on an attention squeeze parallel U-shaped neural network (ASP U-Net) for the bin picking task, is proposed. The method directly provides all necessary information about the feasible grasping points of objects, which are randomly or regularly arranged in a bin with side walls. Moreover, the method is able to evaluate and select the optimal grasping point among the feasible ones for two types of end effectors, i.e., a vacuum cup and a parallel gripper. The key element of the utilized ASP U-Net neural network is the transformation of a single RGB-Depth image of the bin containing nontrivial objects into a schematic grey-scale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. The experiments carried out in this study include a comprehensive set of scenes with randomly scattered, ordered, and semi-ordered objects arranged in impeccable or deformed bins. The results indicate outstanding accuracy with more than acceptable computational requirements. Additionally, the scaling possibilities of the method can offer extremely lightweight implementations, applicable, for example, to battery-powered edge-computing devices with low RAM capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于记忆高效深度学习的非微小物体抓取点检测,用于机器人拣选垃圾桶
使用机械臂从垃圾箱中拾取非小物件是现代工业流程中的一项常见任务。本文提出了一种基于注意力挤压并行 U 型神经网络(ASP U-Net)的高效数据驱动抓取点检测方法,用于垃圾桶拾取任务。该方法可直接提供有关物体可行抓取点的所有必要信息,这些物体可随机或有规律地排列在带侧壁的垃圾箱中。此外,该方法还能在两种终端效应器(即真空吸盘和平行抓手)的可行抓取点中评估和选择最佳抓取点。所使用的 ASP U-Net 神经网络的关键要素是将包含非复杂物体的单一 RGB-Depth 仓图像转换为示意灰度框架,其中抓取点的位置和姿势被编码为梯度几何图形。本研究进行的实验包括一组完整的场景,其中有随机分散、有序和半有序的物体,这些物体被排列在无懈可击或变形的分仓中。实验结果表明,该方法的精确度非常高,而计算要求却超出了可接受的范围。此外,该方法的可扩展性可提供极其轻便的实现方式,例如适用于内存容量较低的电池供电边缘计算设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1