Mapping “Brain Terrain” Regions on Mars Using Deep Learning

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS The Planetary Science Journal Pub Date : 2024-07-23 DOI:10.3847/psj/ad5673
Kyle A. Pearson, Eldar Noe, Daniel Zhao, Alphan Altinok and Alexander M. Morgan
{"title":"Mapping “Brain Terrain” Regions on Mars Using Deep Learning","authors":"Kyle A. Pearson, Eldar Noe, Daniel Zhao, Alphan Altinok and Alexander M. Morgan","doi":"10.3847/psj/ad5673","DOIUrl":null,"url":null,"abstract":"One of the main objectives of the Mars Exploration Program is to search for evidence of past or current life on the planet. To achieve this, Mars exploration has been focusing on regions that may have liquid or frozen water. A set of critical areas may have seen cycles of ice thawing in the relatively recent past in response to periodic changes in the obliquity of Mars. In this work, we use convolutional neural networks to detect surface regions containing “brain terrain,” a landform on Mars whose similarity in morphology and scale to sorted stone circles on Earth suggests that it may have formed as a consequence of freeze/thaw cycles. We use large images (∼100–1000 megapixels) from the Mars Reconnaissance Orbiter to search for these landforms at resolutions close to a few tens of centimeters per pixel (∼25–50 cm). Over 58,000 images (∼28 TB) were searched (∼5% of the Martian surface), and we found detections in 201 images. To expedite the processing, we leverage a classifier network (prior to segmentation) in the Fourier domain that can take advantage of JPEG compression by leveraging blocks of coefficients from a discrete cosine transform in lieu of decoding the entire image at the full spatial resolution. The hybrid pipeline approach maintains ∼93% accuracy while cutting down on ∼95% of the total processing time compared to running the segmentation network at the full resolution on every image.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad5673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main objectives of the Mars Exploration Program is to search for evidence of past or current life on the planet. To achieve this, Mars exploration has been focusing on regions that may have liquid or frozen water. A set of critical areas may have seen cycles of ice thawing in the relatively recent past in response to periodic changes in the obliquity of Mars. In this work, we use convolutional neural networks to detect surface regions containing “brain terrain,” a landform on Mars whose similarity in morphology and scale to sorted stone circles on Earth suggests that it may have formed as a consequence of freeze/thaw cycles. We use large images (∼100–1000 megapixels) from the Mars Reconnaissance Orbiter to search for these landforms at resolutions close to a few tens of centimeters per pixel (∼25–50 cm). Over 58,000 images (∼28 TB) were searched (∼5% of the Martian surface), and we found detections in 201 images. To expedite the processing, we leverage a classifier network (prior to segmentation) in the Fourier domain that can take advantage of JPEG compression by leveraging blocks of coefficients from a discrete cosine transform in lieu of decoding the entire image at the full spatial resolution. The hybrid pipeline approach maintains ∼93% accuracy while cutting down on ∼95% of the total processing time compared to running the segmentation network at the full resolution on every image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习绘制火星上的 "脑地形 "区域图
火星探测计划的主要目标之一是寻找火星上过去或现在存在生命的证据。为了实现这一目标,火星探测一直侧重于可能有液态水或冰冻水的区域。在相对较近的过去,随着火星倾角的周期性变化,一些关键区域可能出现了冰融化周期。在这项工作中,我们使用卷积神经网络来检测包含 "脑地形 "的表面区域,火星上的这种地形在形态和规模上与地球上的分类石圈相似,这表明它可能是冰冻/融化周期的结果。我们利用火星勘测轨道飞行器拍摄的大尺寸图像(100-1000 万像素),以接近每像素几十厘米(25-50 厘米)的分辨率搜索这些地貌。我们搜索了 58,000 多张图像(28 TB)(占火星表面的 5%),在 201 张图像中发现了这些地貌。为了加快处理速度,我们在傅里叶域利用了一个分类器网络(在分割之前),它可以利用离散余弦变换的系数块来代替以全空间分辨率对整个图像进行解码,从而利用 JPEG 压缩的优势。与在每幅图像上以全分辨率运行分割网络相比,混合流水线方法保持了 ∼93% 的准确率,同时减少了 ∼95% 的总处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
期刊最新文献
Jovian Vortex Hunter: A Citizen Science Project to Study Jupiter’s Vortices Experimental Method for Measuring Cohesion of Regolith via Electrostatic Lofting Mid-infrared Measurements of Ion-irradiated Carbonaceous Meteorites: How to Better Detect Space Weathering Effects Triton’s Captured Youth: Tidal Heating Kept Triton Warm and Active for Billions of Years The Global Distribution of Water and Hydroxyl on the Moon as Seen by the Moon Mineralogy Mapper (M3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1