{"title":"Facilitators and barriers to the adoption of active back-support exoskeletons in the construction industry","authors":"","doi":"10.1016/j.jsr.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p><em>Introduction:</em> Active back-support exoskeletons are gaining more awareness as a solution to the prevalence of work-related musculoskeletal disorders in the construction industry. This study aims to understand the factors that influence the adoption of active back-support exoskeletons in the construction industry. <em>Method:</em> A literature review was conducted to gather relevant adoption factors related to exoskeleton implementation. Building on the TOE (Technology, Organization, and Environment) framework, two rounds of the survey via the Delphi technique were administered with 13 qualified industry professionals to determine the most important adoption factors using the relative importance index. Through semi-structured interviews, the professionals expressed their perspectives on the impact of active back-support exoskeletons on the construction industry. <em>Results:</em> Important factors included 18 facilitators and 21 barriers. The impact of the exoskeletons in the construction industry was categorized into expected benefits, barriers, solutions, adjustment to technology, implementation, and applicable tasks. <em>Conclusions:</em> This study identified the factors to be considered in the adoption and implementation of active back-support exoskeletons in the construction industry from the perspective of stakeholders. The study also elucidates the impact of active exoskeletons on construction organizations and the broader environment. <em>Practical Applications</em>: This study provides useful guidance to construction companies interested in adopting active back-support exoskeletons. Our results will also help manufacturers of active back-support exoskeletons to understand the functional requirements and adjustments required for utilization in the construction industry. Lastly, the study expands the application of the TOE framework to the adoption of active back-support exoskeletons in the construction industry.</p></div>","PeriodicalId":48224,"journal":{"name":"Journal of Safety Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002243752400063X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Active back-support exoskeletons are gaining more awareness as a solution to the prevalence of work-related musculoskeletal disorders in the construction industry. This study aims to understand the factors that influence the adoption of active back-support exoskeletons in the construction industry. Method: A literature review was conducted to gather relevant adoption factors related to exoskeleton implementation. Building on the TOE (Technology, Organization, and Environment) framework, two rounds of the survey via the Delphi technique were administered with 13 qualified industry professionals to determine the most important adoption factors using the relative importance index. Through semi-structured interviews, the professionals expressed their perspectives on the impact of active back-support exoskeletons on the construction industry. Results: Important factors included 18 facilitators and 21 barriers. The impact of the exoskeletons in the construction industry was categorized into expected benefits, barriers, solutions, adjustment to technology, implementation, and applicable tasks. Conclusions: This study identified the factors to be considered in the adoption and implementation of active back-support exoskeletons in the construction industry from the perspective of stakeholders. The study also elucidates the impact of active exoskeletons on construction organizations and the broader environment. Practical Applications: This study provides useful guidance to construction companies interested in adopting active back-support exoskeletons. Our results will also help manufacturers of active back-support exoskeletons to understand the functional requirements and adjustments required for utilization in the construction industry. Lastly, the study expands the application of the TOE framework to the adoption of active back-support exoskeletons in the construction industry.
期刊介绍:
Journal of Safety Research is an interdisciplinary publication that provides for the exchange of ideas and scientific evidence capturing studies through research in all areas of safety and health, including traffic, workplace, home, and community. This forum invites research using rigorous methodologies, encourages translational research, and engages the global scientific community through various partnerships (e.g., this outreach includes highlighting some of the latest findings from the U.S. Centers for Disease Control and Prevention).