Accounting for ground-motion uncertainty in empirical seismic fragility modeling

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2024-07-25 DOI:10.1177/87552930241261486
Lukas Bodenmann, Jack W Baker, Božidar Stojadinović
{"title":"Accounting for ground-motion uncertainty in empirical seismic fragility modeling","authors":"Lukas Bodenmann, Jack W Baker, Božidar Stojadinović","doi":"10.1177/87552930241261486","DOIUrl":null,"url":null,"abstract":"Seismic fragility models provide a probabilistic relation between ground-motion intensity and damage, making them a crucial component of many regional risk assessments. Estimating such models from damage data gathered after past earthquakes is challenging because of uncertainty in the ground-motion intensity the structures were subjected to. Here, we develop a Bayesian estimation procedure that performs joint inference over ground-motion intensity and fragility model parameters. When applied to simulated damage data, the proposed method can recover the data-generating fragility functions, while the traditionally used method, employing fixed, best-estimate, intensity values, fails to do so. Analyses using synthetic data with known properties show that the traditional method results in flatter fragility functions that overestimate damage probabilities for low-intensity values and underestimate probabilities for large values. Similar trends are observed when comparing both methods on real damage data. The results suggest that neglecting ground-motion uncertainty manifests in apparent dispersion in the estimated fragility functions. This undesirable feature can be mitigated through the proposed Bayesian procedure.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930241261486","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic fragility models provide a probabilistic relation between ground-motion intensity and damage, making them a crucial component of many regional risk assessments. Estimating such models from damage data gathered after past earthquakes is challenging because of uncertainty in the ground-motion intensity the structures were subjected to. Here, we develop a Bayesian estimation procedure that performs joint inference over ground-motion intensity and fragility model parameters. When applied to simulated damage data, the proposed method can recover the data-generating fragility functions, while the traditionally used method, employing fixed, best-estimate, intensity values, fails to do so. Analyses using synthetic data with known properties show that the traditional method results in flatter fragility functions that overestimate damage probabilities for low-intensity values and underestimate probabilities for large values. Similar trends are observed when comparing both methods on real damage data. The results suggest that neglecting ground-motion uncertainty manifests in apparent dispersion in the estimated fragility functions. This undesirable feature can be mitigated through the proposed Bayesian procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在地震脆性经验建模中考虑地动的不确定性
地震脆性模型提供了地动强度与破坏之间的概率关系,使其成为许多区域风险评估的重要组成部分。由于结构所受地动强度的不确定性,从过去地震后收集的破坏数据中估算此类模型具有挑战性。在此,我们开发了一种贝叶斯估算程序,对地动强度和脆性模型参数进行联合推断。当应用于模拟破坏数据时,所提出的方法可以恢复数据生成的脆性函数,而传统使用的方法(采用固定的最佳强度值)则无法做到这一点。使用已知属性的合成数据进行的分析表明,传统方法得出的脆性函数较平,高估了低强度值的破坏概率,低估了大强度值的概率。在对两种方法的真实破坏数据进行比较时,也观察到类似的趋势。结果表明,忽略地动的不确定性会导致估算的脆性函数明显分散。这种不可取的特征可以通过建议的贝叶斯程序得到缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Front Matter The 2023 Alaska National Seismic Hazard Model Vulnerability of suspension bridges to spatially variable vertical ground motions Probabilistic seismic hazard analysis for the Dominican Republic Frame buildings are not an answer for earthquakes: The case of the February 2023 earthquakes in Türkiye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1