{"title":"Human-motion adaptability enhancement of wearable electromagnetic vibration energy harvesters toward self-sustained body sensor networks","authors":"","doi":"10.1016/j.xcrp.2024.102117","DOIUrl":null,"url":null,"abstract":"<p>As a critical element of the technological infrastructure of body sensor networks (BSNs), wearable electromagnetic vibration energy harvesters (EMVEHs) are a competitive candidate for breaking through the development bottleneck of BSNs’ sustainability, and thus facilitating their self-sustained operations with versatile functions. To this end, the prior concern of wearable EMVEHs is to enhance their adaptability to complex biomechanics of human motions for better power generation performance. Given the state-of-the-art progress of this BSN enabling technology, we provide a comprehensive and in-depth summary of recent excitation-adaptive designs of miniaturized wearable EMVEHs focusing on their insightful vibration pick-up structures here, to systematically clarify a developing roadmap of this branch of science and then offer inspirations for the underway endeavors focused on energy harvesting from human motions. In this way, we try to lift the impacts of current innovative efforts in this field and corresponding BSN achievements to a higher level.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"49 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102117","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a critical element of the technological infrastructure of body sensor networks (BSNs), wearable electromagnetic vibration energy harvesters (EMVEHs) are a competitive candidate for breaking through the development bottleneck of BSNs’ sustainability, and thus facilitating their self-sustained operations with versatile functions. To this end, the prior concern of wearable EMVEHs is to enhance their adaptability to complex biomechanics of human motions for better power generation performance. Given the state-of-the-art progress of this BSN enabling technology, we provide a comprehensive and in-depth summary of recent excitation-adaptive designs of miniaturized wearable EMVEHs focusing on their insightful vibration pick-up structures here, to systematically clarify a developing roadmap of this branch of science and then offer inspirations for the underway endeavors focused on energy harvesting from human motions. In this way, we try to lift the impacts of current innovative efforts in this field and corresponding BSN achievements to a higher level.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.