Ecem Nur Yıldızcan, Mehmet Erdi Arı, Burcu Tunga, Ali Gelir, Fatih Kurul, Nusret As, Türker Dündar
{"title":"Machine learning based tomographic image reconstruction technique to detect hollows in wood","authors":"Ecem Nur Yıldızcan, Mehmet Erdi Arı, Burcu Tunga, Ali Gelir, Fatih Kurul, Nusret As, Türker Dündar","doi":"10.1007/s00226-024-01580-z","DOIUrl":null,"url":null,"abstract":"<div><p>A new technique based on machine learning algorithms was introduced to detect internal wood defects. This technique relies on analyzing segmented propagation rays of stress waves and successfully generates the tomographic images of the defects by using the stress wave velocity. Utilizing a dual-stage methodology, the initial phase involves ray segmentation for the precise delineation of stress wave propagation, while the subsequent stage integrates advanced classification and clustering algorithms to facilitate the generation of tomographic images. This approach effectively tackles the inherent challenges associated with accurate segmentation and classification of stress wave velocity rays. The effectiveness of the proposed method was evaluated using both synthetic and experimental data. The results showed that the proposed method, when compared with some state-of-the-art methods, has a superior ability to accurately detect defective regions in the wood. The success of the proposed method is evaluated with four different evaluation metrics. It determined that over 90% success is achieved for all metrics. In comparison with related studies, it determined that the results are improved by 7–22% compared to the literature.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 4","pages":"1491 - 1516"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01580-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01580-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
A new technique based on machine learning algorithms was introduced to detect internal wood defects. This technique relies on analyzing segmented propagation rays of stress waves and successfully generates the tomographic images of the defects by using the stress wave velocity. Utilizing a dual-stage methodology, the initial phase involves ray segmentation for the precise delineation of stress wave propagation, while the subsequent stage integrates advanced classification and clustering algorithms to facilitate the generation of tomographic images. This approach effectively tackles the inherent challenges associated with accurate segmentation and classification of stress wave velocity rays. The effectiveness of the proposed method was evaluated using both synthetic and experimental data. The results showed that the proposed method, when compared with some state-of-the-art methods, has a superior ability to accurately detect defective regions in the wood. The success of the proposed method is evaluated with four different evaluation metrics. It determined that over 90% success is achieved for all metrics. In comparison with related studies, it determined that the results are improved by 7–22% compared to the literature.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.