MatUp: Repurposing Image Upsamplers for SVBRDFs

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-07-24 DOI:10.1111/cgf.15151
A. Gauthier, B. Kerbl, J. Levallois, R. Faury, J. M. Thiery, T. Boubekeur
{"title":"MatUp: Repurposing Image Upsamplers for SVBRDFs","authors":"A. Gauthier,&nbsp;B. Kerbl,&nbsp;J. Levallois,&nbsp;R. Faury,&nbsp;J. M. Thiery,&nbsp;T. Boubekeur","doi":"10.1111/cgf.15151","DOIUrl":null,"url":null,"abstract":"<p>We propose M<span>at</span>U<span>p</span>, an upsampling filter for material super-resolution. Our method takes as input a low-resolution SVBRDF and upscales its maps so that their rendering under various lighting conditions fits upsampled renderings inferred in the radiance domain with pre-trained RGB upsamplers. We formulate our local filter as a compact Multilayer Perceptron (MLP), which acts on a small window of the input SVBRDF and is optimized using a data-fitting loss defined over upsampled radiance at various locations. This optimization is entirely performed at the scale of a single, independent material. Doing so, M<span>at</span>U<span>p</span> leverages the reconstruction capabilities acquired over large collections of natural images by pre-trained RGB models and provides regularization over self-similar structures. In particular, our light-weight neural filter avoids retraining complex architectures from scratch or accessing any large collection of low/high resolution material pairs – which do not actually exist at the scale RGB upsamplers are trained with. As a result, M<span>at</span>U<span>p</span> provides fine and coherent details in the upscaled material maps, as shown in the extensive evaluation we provide.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We propose MatUp, an upsampling filter for material super-resolution. Our method takes as input a low-resolution SVBRDF and upscales its maps so that their rendering under various lighting conditions fits upsampled renderings inferred in the radiance domain with pre-trained RGB upsamplers. We formulate our local filter as a compact Multilayer Perceptron (MLP), which acts on a small window of the input SVBRDF and is optimized using a data-fitting loss defined over upsampled radiance at various locations. This optimization is entirely performed at the scale of a single, independent material. Doing so, MatUp leverages the reconstruction capabilities acquired over large collections of natural images by pre-trained RGB models and provides regularization over self-similar structures. In particular, our light-weight neural filter avoids retraining complex architectures from scratch or accessing any large collection of low/high resolution material pairs – which do not actually exist at the scale RGB upsamplers are trained with. As a result, MatUp provides fine and coherent details in the upscaled material maps, as shown in the extensive evaluation we provide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MatUp:为 SVBRDF 重用图像升维器
我们提出的 MatUp 是一种用于材质超分辨率的上采样滤波器。我们的方法将低分辨率 SVBRDF 作为输入,并对其贴图进行升频,使其在各种光照条件下的渲染效果符合使用预训练 RGB 升频器在辐射域推断出的升频渲染效果。我们将本地滤波器设计为一个紧凑的多层感知器(MLP),它作用于输入 SVBRDF 的一个小窗口,并使用定义在不同位置的上采样辐射率上的数据拟合损失进行优化。这种优化完全是在单个独立材料的尺度上进行的。在此过程中,MatUp 利用预先训练的 RGB 模型在大量自然图像集合中获得的重建能力,并对自相似结构进行正则化。特别是,我们的轻量级神经滤波器避免了从头开始重新训练复杂的架构,也避免了访问低/高分辨率材料对的任何大型集合--在 RGB 上采样器的训练规模下,这些材料对实际上并不存在。因此,正如我们提供的大量评估结果所显示的那样,MatUp 可以在放大的材质映射中提供精细、连贯的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
Front Matter DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1