Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-07-25 DOI:10.1016/j.ijthermalsci.2024.109283
{"title":"Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution","authors":"","doi":"10.1016/j.ijthermalsci.2024.109283","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of temperature distributions on heat transfer dynamics is studied in two-dimensional Rayleigh–Bénard convection cells. Employing a Direct Numerical Simulation technique with an Euler scheme for time integration, the study analyzes three distinct cases: Homogeneous plate temperature distribution, centrally elevated plate temperature configuration, and peripherally dominant plate temperature configuration Rayleigh–Bénard convection cases. With variations in Rayleigh number (<span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span>) ranging between <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></math></span>, key metrics such as the Nusselt number (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>), Reynolds number (<span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>), as well as thermal and kinetic energy dissipation rates, are examined to gauge efficient heat transfer and fluid flow characteristics. At <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span>, the peripherally dominant plate temperature configuration exhibited a higher <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> value of 15.9, indicating a 10.4 percent improvement over the homogeneous or normal temperature distribution. As <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> increased to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></math></span>, the nonhomogeneous temperature distribution demonstrated a substantial 14.9 percent increase in <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> compared to the homogeneous distribution. Similar trends were observed in <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>, indicating the impact of nonhomogeneous temperature conditions on fluid flow characteristics. This highlights the significant role of localized temperature gradients in enhancing both heat transfer efficiency and fluid motion. Addressing potential constraints, this study acknowledges uncertainties associated with the scalability of the findings. Despite this challenge, the insights gained offer a deeper understanding of temperature-flow dynamics, with applications in electronics cooling where precise control of heat transfer is crucial, as well as in thermal engineering and climate modeling.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924004058","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of temperature distributions on heat transfer dynamics is studied in two-dimensional Rayleigh–Bénard convection cells. Employing a Direct Numerical Simulation technique with an Euler scheme for time integration, the study analyzes three distinct cases: Homogeneous plate temperature distribution, centrally elevated plate temperature configuration, and peripherally dominant plate temperature configuration Rayleigh–Bénard convection cases. With variations in Rayleigh number (Ra) ranging between 107 and 1010, key metrics such as the Nusselt number (Nu), Reynolds number (Re), as well as thermal and kinetic energy dissipation rates, are examined to gauge efficient heat transfer and fluid flow characteristics. At Ra=107, the peripherally dominant plate temperature configuration exhibited a higher Nu value of 15.9, indicating a 10.4 percent improvement over the homogeneous or normal temperature distribution. As Ra increased to 1010, the nonhomogeneous temperature distribution demonstrated a substantial 14.9 percent increase in Nu compared to the homogeneous distribution. Similar trends were observed in Re, indicating the impact of nonhomogeneous temperature conditions on fluid flow characteristics. This highlights the significant role of localized temperature gradients in enhancing both heat transfer efficiency and fluid motion. Addressing potential constraints, this study acknowledges uncertainties associated with the scalability of the findings. Despite this challenge, the insights gained offer a deeper understanding of temperature-flow dynamics, with applications in electronics cooling where precise control of heat transfer is crucial, as well as in thermal engineering and climate modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化二维瑞利-贝纳德对流中的传热和对流单元动力学:可变边界温度分布的影响
研究了二维瑞利-贝纳德对流单元中温度分布对传热动力学的影响。研究采用直接数值模拟技术和欧拉时间积分方案,分析了三种不同的情况:均质板层温度分布、中心升高板层温度配置和外围主导板层温度配置的瑞利-贝纳德对流情况。在雷利数()介于和之间的变化情况下,研究了诸如努塞尔特数()、雷诺数()以及热能和动能耗散率等关键指标,以衡量高效传热和流体流动特性。在Ⅳ阶段,外围占主导地位的板温度配置显示出 15.9 的较高值,表明比均匀或正常温度分布改善了 10.4%。当温度升高到Ⅳ时,非均质温度分布比均质温度分布大幅提高了 14.9%。类似的趋势也出现在 ,表明非均质温度条件对流体流动特性的影响。这凸显了局部温度梯度在提高传热效率和流体运动方面的重要作用。针对潜在的制约因素,本研究承认研究结果的可扩展性存在不确定性。尽管存在这一挑战,但所获得的见解加深了人们对温度-流动动力学的理解,可应用于对传热的精确控制至关重要的电子冷却领域,以及热工程和气候建模领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Experimental analysis of W/EG based Al2O3-MWCNT non-Newtonian hybrid nanofluid by employing helical tape inserts inside a corrugated tube Enhanced pool boiling heat transfer by coupling multiscale structures and mixed wettability Experimental and numerical investigation of the influence of varying micro-channel width on flow and heat transfer uniformity Horizontal flow boiling of carbon dioxide inside a conventional tube and parallel minichannels of a square cross-section Developing a machine learning model for heat pipes considering different input features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1