{"title":"CFD-DEM modelling of particle entrainment in wheel–rail interface: a parametric study on train characteristics","authors":"Sadaf Maramizonouz, Sadegh Nadimi, Roger Lewis","doi":"10.1007/s00707-024-04032-8","DOIUrl":null,"url":null,"abstract":"<div><p>Rail-sanding is employed to improve the train’s wheel–rail traction loss in low adhesion conditions. This can significantly impede trains’ kinematics, operation, and performance by hindering the train’s acceleration and deceleration, resulting in delays and unreliability of transport system as well as causing safety risks and in the worst cases train collisions. Rail-sanding has its own merits in recovering the wheel–rail traction but can result in a sand wastage of more than 80% due to its low sand entrainment efficiency. In this research, computational fluid dynamics is coupled to discrete element modelling to study the behaviour of sand particles during rail-sanding. A parametric study based on the train characteristics, including train velocity, sand flow rate, and the geometry of the sander nozzle, is performed by comparing the entrainment efficiency of the sand particles. It is found that train velocities over 30 m/s result in the entrainment efficiency of almost zero. A moving air layer generated at the wheel–rail interface influences the lower bound of acceptable particle size range. The flow rate and nozzle geometry can be designed to enhance entrainment efficiency.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 10","pages":"6077 - 6087"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00707-024-04032-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04032-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rail-sanding is employed to improve the train’s wheel–rail traction loss in low adhesion conditions. This can significantly impede trains’ kinematics, operation, and performance by hindering the train’s acceleration and deceleration, resulting in delays and unreliability of transport system as well as causing safety risks and in the worst cases train collisions. Rail-sanding has its own merits in recovering the wheel–rail traction but can result in a sand wastage of more than 80% due to its low sand entrainment efficiency. In this research, computational fluid dynamics is coupled to discrete element modelling to study the behaviour of sand particles during rail-sanding. A parametric study based on the train characteristics, including train velocity, sand flow rate, and the geometry of the sander nozzle, is performed by comparing the entrainment efficiency of the sand particles. It is found that train velocities over 30 m/s result in the entrainment efficiency of almost zero. A moving air layer generated at the wheel–rail interface influences the lower bound of acceptable particle size range. The flow rate and nozzle geometry can be designed to enhance entrainment efficiency.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.