T. TG, D. M. Tran, H. W. Jensen, R. Ramamoorthi, J. R. Frisvad
{"title":"Neural SSS: Lightweight Object Appearance Representation","authors":"T. TG, D. M. Tran, H. W. Jensen, R. Ramamoorthi, J. R. Frisvad","doi":"10.1111/cgf.15158","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We present a method for capturing the BSSRDF (bidirectional scattering-surface reflectance distribution function) of arbitrary geometry with a neural network. We demonstrate how a compact neural network can represent the full 8-dimensional light transport within an object including heterogeneous scattering. We develop an efficient rendering method using importance sampling that is able to render complex translucent objects under arbitrary lighting. Our method can also leverage the common planar half-space assumption, which allows it to represent one BSSRDF model that can be used across a variety of geometries. Our results demonstrate that we can render heterogeneous translucent objects under arbitrary lighting and obtain results that match the reference rendered using volumetric path tracing.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15158","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a method for capturing the BSSRDF (bidirectional scattering-surface reflectance distribution function) of arbitrary geometry with a neural network. We demonstrate how a compact neural network can represent the full 8-dimensional light transport within an object including heterogeneous scattering. We develop an efficient rendering method using importance sampling that is able to render complex translucent objects under arbitrary lighting. Our method can also leverage the common planar half-space assumption, which allows it to represent one BSSRDF model that can be used across a variety of geometries. Our results demonstrate that we can render heterogeneous translucent objects under arbitrary lighting and obtain results that match the reference rendered using volumetric path tracing.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.