Enzymatic cascade reactors on carbon nanotube transistor detecting trace prostate cancer biomarker

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2024-07-23 DOI:10.1016/j.bios.2024.116603
{"title":"Enzymatic cascade reactors on carbon nanotube transistor detecting trace prostate cancer biomarker","authors":"","doi":"10.1016/j.bios.2024.116603","DOIUrl":null,"url":null,"abstract":"<div><p>Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer. Enzymatic cascade rectors are constructed on the CNT to improve the reaction efficiency, thereby, enhancing the signal transduction. As such, a limit of detection as low as 105 zM is achieved in buffer solution. Owing to the enhanced reaction efficiency, the testing of clinical serum samples yields significant signal difference to discriminate the prostate cancer (PCa) samples from the benign prostatic hyperplasia (BPH) samples (<em>P</em> = 1.07 × 10<sup>−5</sup>), demonstrating immense potential in practical applications.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324006080","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer. Enzymatic cascade rectors are constructed on the CNT to improve the reaction efficiency, thereby, enhancing the signal transduction. As such, a limit of detection as low as 105 zM is achieved in buffer solution. Owing to the enhanced reaction efficiency, the testing of clinical serum samples yields significant signal difference to discriminate the prostate cancer (PCa) samples from the benign prostatic hyperplasia (BPH) samples (P = 1.07 × 10−5), demonstrating immense potential in practical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管晶体管上的酶级联反应器检测微量前列腺癌生物标记物。
基于碳纳米管场效应晶体管(CNT-FET)的生物传感器因其显著的半导体电学特性而具有高灵敏度,在生物标记物检测方面显示出巨大的潜力。然而,复杂介质中的背景信号干扰可能会导致信噪比较低,这可能会给生理液体中生物标记物的精确检测带来挑战。在这项工作中,我们开发了一种酶促 CNT-FET,可在晶圆规模上进行规模化生产,用于检测痕量肌氨酸(前列腺癌的一种活检相关生物标记物)。在 CNT 上构建酶级联整流器可提高反应效率,从而增强信号传导。因此,在缓冲溶液中的检测限低至 105 zM。由于反应效率的提高,对临床血清样本的检测产生了显著的信号差异,可以区分前列腺癌(PCa)样本和良性前列腺增生(BPH)样本(P = 1.07 × 10-5),显示了在实际应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Cortical, striatal, and thalamic populations self-organize into a functionally connected circuit with long-term memory properties NanoMIP beacons with a co-operative binding mechanism for the all-in-one detection of methamphetamine aptamer complexes Cascade enzyme-mimicking with spatially separated gold-ceria for dual-mode detection of superoxide anions One-step copper deposition-induced signal amplification for multiplex bacterial infection diagnosis on a lateral flow immunoassay device Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1