Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Mihai Valentin Predoi, Liliana Ghegoiu, Nicolas Buton, Mikael Motelica-Heino
{"title":"Copper doped hydroxyapatite nanocomposite thin films: synthesis, physico–chemical and biological evaluation","authors":"Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Mihai Valentin Predoi, Liliana Ghegoiu, Nicolas Buton, Mikael Motelica-Heino","doi":"10.1007/s10534-024-00620-2","DOIUrl":null,"url":null,"abstract":"<div><p>Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol–gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film’s surface favored the attachment and proliferation of HGF-1 cells on their surface.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1487 - 1500"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10534-024-00620-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-024-00620-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol–gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film’s surface favored the attachment and proliferation of HGF-1 cells on their surface.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.