Pub Date : 2025-02-27DOI: 10.1007/s10534-025-00673-x
Daniele Sanna, Angela Fadda, Milena Casula, Grazia Palomba, Maria Cristina Sini, Maria Colombino, Carla Rozzo, Giuseppe Palmieri, Carmela Gallo, Dalila Carbone, Laura Siracusa, Luana Pulvirenti, Valeria Ugone
Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.
{"title":"Antidiabetic potential of vanadium complexes combined with olive leaf extracts: a viable approach to reduce metal toxicity.","authors":"Daniele Sanna, Angela Fadda, Milena Casula, Grazia Palomba, Maria Cristina Sini, Maria Colombino, Carla Rozzo, Giuseppe Palmieri, Carmela Gallo, Dalila Carbone, Laura Siracusa, Luana Pulvirenti, Valeria Ugone","doi":"10.1007/s10534-025-00673-x","DOIUrl":"https://doi.org/10.1007/s10534-025-00673-x","url":null,"abstract":"<p><p>Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-26DOI: 10.1007/s10534-025-00669-7
Salhah Hamed Alrefaee, Faizah S Aljohani, M El-Khatib, Yahya H Shahin, Bassma H Elwakil, Sendianah H Shahin, Sara H Akl, Esraa Abdelhamid Moneer, Amira Abd-Elfattah Darwish
Cryptosporidium is a food and water-borne enteric protozoan that infects a wide range of vertebrates, causing life-threatening complications, particularly in immunocompromised hosts. The absence of effective anti-cryptosporidial medications could be attributed to the parasite's specific intestinal location, as well as the lack of research into the mechanism by which the protozoan impairs intestine cellular function. The present work aimed to evaluate the in vivo efficacy of zinc nanoparticles in the treatment of experimental cryptosporidiosis infection in immunosuppressed mice. Small-sized ZnO-NPs revealed better treatment efficacy than Large-sized ZnO-NPs in all studies. Nitazoxanide-treated group revealed the highest percentage reduction of the oocyst's counts followed by the small-sized ZnO-NPs treated group. The small-sized ZnO-NPs treated mice group showed a minimal inflammatory effect in all examined treated tissues when compared to the infected non-treated group. The morphological structure of the oocysts was examined using SEM indicating variable degrees of morphological changes in the treated mice. Moreover, the levels of biochemical analyses were significantly lower in the treated group. The histopathological study revealed the significant effect of small-sized ZnO-NPs in treating cryptosporidiosis.
{"title":"Evaluation of potential antiparasitic effect of ZnO nanoparticles on experimental cryptosporidiosis in immunosuppressed mice.","authors":"Salhah Hamed Alrefaee, Faizah S Aljohani, M El-Khatib, Yahya H Shahin, Bassma H Elwakil, Sendianah H Shahin, Sara H Akl, Esraa Abdelhamid Moneer, Amira Abd-Elfattah Darwish","doi":"10.1007/s10534-025-00669-7","DOIUrl":"https://doi.org/10.1007/s10534-025-00669-7","url":null,"abstract":"<p><p>Cryptosporidium is a food and water-borne enteric protozoan that infects a wide range of vertebrates, causing life-threatening complications, particularly in immunocompromised hosts. The absence of effective anti-cryptosporidial medications could be attributed to the parasite's specific intestinal location, as well as the lack of research into the mechanism by which the protozoan impairs intestine cellular function. The present work aimed to evaluate the in vivo efficacy of zinc nanoparticles in the treatment of experimental cryptosporidiosis infection in immunosuppressed mice. Small-sized ZnO-NPs revealed better treatment efficacy than Large-sized ZnO-NPs in all studies. Nitazoxanide-treated group revealed the highest percentage reduction of the oocyst's counts followed by the small-sized ZnO-NPs treated group. The small-sized ZnO-NPs treated mice group showed a minimal inflammatory effect in all examined treated tissues when compared to the infected non-treated group. The morphological structure of the oocysts was examined using SEM indicating variable degrees of morphological changes in the treated mice. Moreover, the levels of biochemical analyses were significantly lower in the treated group. The histopathological study revealed the significant effect of small-sized ZnO-NPs in treating cryptosporidiosis.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1007/s10534-025-00671-z
Sanjib Manna, Sayed Mohammed Firdous
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
{"title":"Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review.","authors":"Sanjib Manna, Sayed Mohammed Firdous","doi":"10.1007/s10534-025-00671-z","DOIUrl":"https://doi.org/10.1007/s10534-025-00671-z","url":null,"abstract":"<p><p>Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20DOI: 10.1007/s10534-025-00670-0
Wei Qing Hong, Wing-Hin Lee, Siti Hajar Musa, Nur Azzalia Kamaruzaman, Ching-Yee Loo
Chronic wound healing is associated with prolonged elevated inflammation and high levels of oxidative stress leading to cell death. The majority of wounds are colonized with antibiotic-resistant bacterial biofilms such as Pseudomonas aeruginosa and Staphylococcus aureus. An ideal wound treatment should include agents with antioxidant, anti-inflammatory, and antibiofilm behavior. Therefore, in this study, a combination of curcumin nanoparticle (Cur-NP) and silver nanoparticle (AgNP) (Cur-NP/AgNP) loaded PVA hydrogel was used to inhibit the bacterial attachment and subsequent biofilm formation of P. aeruginosa and S. aureus. Cur was known for its antioxidant and anti-inflammatory effect while being non-toxic to cells. Meanwhile, AgNP demonstrated superior anti-bacterial and antibiofilm activities against both P. aeruginosa and S. aureus. Cur-NP/AgNP loaded PVA hydrogels completely inhibited the bacterial attachment and biofilm formation, possibly due to synergistic effect of Cur-NPs and AgNPs in killing the bacterial cells. It should be highlighted that no surviving bacterial cells were noted for Cur-NP/AgNP loaded hydrogels. On the other hand, AgNPs or Cur-NPs alone loaded hydrogels were unable to achieve complete inhibition of biofilm formation, even though significant reduction in the biofilm mass was noted compared with control samples. Cur-NP and AgNP exerted oxidative-stress induced cell death in HaCaT cells via mitochondrial dysfunction, mitochondrial membrane potential (MMP) reduction, adenosine triphosphate inhibition, and increased cytochrome C release. The toxicity of formulation followed the decreasing trend: Cur-NP/AgNP < AgNPs alone < Cur-NPs alone. Taken together, the combination of Cur-NP/AgNP completely inhibited bacterial biofilm formation through bactericidal effect on the planktonic cells while exerted the least toxic effects towards skin cells.
{"title":"Evaluation of hydrogel loading with curcumin and silver nanoparticles: biocompatibilities and anti-biofilm activities.","authors":"Wei Qing Hong, Wing-Hin Lee, Siti Hajar Musa, Nur Azzalia Kamaruzaman, Ching-Yee Loo","doi":"10.1007/s10534-025-00670-0","DOIUrl":"https://doi.org/10.1007/s10534-025-00670-0","url":null,"abstract":"<p><p>Chronic wound healing is associated with prolonged elevated inflammation and high levels of oxidative stress leading to cell death. The majority of wounds are colonized with antibiotic-resistant bacterial biofilms such as Pseudomonas aeruginosa and Staphylococcus aureus. An ideal wound treatment should include agents with antioxidant, anti-inflammatory, and antibiofilm behavior. Therefore, in this study, a combination of curcumin nanoparticle (Cur-NP) and silver nanoparticle (AgNP) (Cur-NP/AgNP) loaded PVA hydrogel was used to inhibit the bacterial attachment and subsequent biofilm formation of P. aeruginosa and S. aureus. Cur was known for its antioxidant and anti-inflammatory effect while being non-toxic to cells. Meanwhile, AgNP demonstrated superior anti-bacterial and antibiofilm activities against both P. aeruginosa and S. aureus. Cur-NP/AgNP loaded PVA hydrogels completely inhibited the bacterial attachment and biofilm formation, possibly due to synergistic effect of Cur-NPs and AgNPs in killing the bacterial cells. It should be highlighted that no surviving bacterial cells were noted for Cur-NP/AgNP loaded hydrogels. On the other hand, AgNPs or Cur-NPs alone loaded hydrogels were unable to achieve complete inhibition of biofilm formation, even though significant reduction in the biofilm mass was noted compared with control samples. Cur-NP and AgNP exerted oxidative-stress induced cell death in HaCaT cells via mitochondrial dysfunction, mitochondrial membrane potential (MMP) reduction, adenosine triphosphate inhibition, and increased cytochrome C release. The toxicity of formulation followed the decreasing trend: Cur-NP/AgNP < AgNPs alone < Cur-NPs alone. Taken together, the combination of Cur-NP/AgNP completely inhibited bacterial biofilm formation through bactericidal effect on the planktonic cells while exerted the least toxic effects towards skin cells.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-18DOI: 10.1007/s10534-025-00667-9
Shahar Yar, Muhammad Arslan Ashraf, Rizwan Rasheed, Umer Farooq, Arslan Hafeez, Shafaqat Ali, Mudassar Shahid, Pallab K Sarker
Contamination of vegetables with heavy metals and microplastics is a major environmental and human health concern. This study investigated the role of taurine (TAE) in alleviating arsenic (As) and polyvinyl chloride microplastic (MP) toxicity in broccoli plants. The experiment followed a completely randomized design with four replicates per treatment. Plants were grown in soil spiked with MP (200 mg kg‒1), As (42.8 mg kg‒1), and their combination (As + MP) with or without taurine (TAE; 100 mg L‒1) foliar supplementation. Results demonstrated that MP, As, and As + MP toxicity markedly decreased growth, chlorophyll content, photosynthesis, and nutrient uptake in broccoli plants. Exposure to individual or combined MP and As increased oxidative damage, indicated by elevated methylglyoxal (MG), superoxide radical (O2⋅‒), hydrogen peroxide (H2O2), hydroxyl radical (⋅OH), and malondialdehyde (MDA) levels alongside intensified lipoxygenase (LOX) activity and leaf relative membrane permeability (RMP). Histochemical analyses revealed higher lipid peroxidation, membrane damage as well as increased H2O2 and O2•‒ levels in the leaves of stressed plants. Micropalstic and As toxicity deteriorated anatomical structures, with diminished leaf and root epidermal thickness, cortex thickness, and vascular bundle area. However, TAE improved the antioxidant enzyme activities, endogenous ascorbate-glutathione pools, hydrogen sulfide and nitric oxide levels that reduced H2O2, O2⋅‒, ⋅OH, RMP, MDA, and activity of LOX. Taurine elevated osmolyte accumulation that protected membrane integrity, resulting in increased leaf relative water content and plant biomass. Plants supplemented with TAE demonstrated improved anatomical structures, resulting in diminished As uptake and its associated phytotoxicity. These findings highlight that TAE improved redox balance, osmoregulation, ion homeostasis, and anatomical structures, augmenting tolerance to As and MP toxicity in broccoli.
{"title":"Taurine decreases arsenic and microplastic toxicity in broccoli (Brassica oleracea L.) through functional and microstructural alterations.","authors":"Shahar Yar, Muhammad Arslan Ashraf, Rizwan Rasheed, Umer Farooq, Arslan Hafeez, Shafaqat Ali, Mudassar Shahid, Pallab K Sarker","doi":"10.1007/s10534-025-00667-9","DOIUrl":"https://doi.org/10.1007/s10534-025-00667-9","url":null,"abstract":"<p><p>Contamination of vegetables with heavy metals and microplastics is a major environmental and human health concern. This study investigated the role of taurine (TAE) in alleviating arsenic (As) and polyvinyl chloride microplastic (MP) toxicity in broccoli plants. The experiment followed a completely randomized design with four replicates per treatment. Plants were grown in soil spiked with MP (200 mg kg<sup>‒1</sup>), As (42.8 mg kg<sup>‒1</sup>), and their combination (As + MP) with or without taurine (TAE; 100 mg L<sup>‒1</sup>) foliar supplementation. Results demonstrated that MP, As, and As + MP toxicity markedly decreased growth, chlorophyll content, photosynthesis, and nutrient uptake in broccoli plants. Exposure to individual or combined MP and As increased oxidative damage, indicated by elevated methylglyoxal (MG), superoxide radical (O<sub>2</sub><sup>⋅‒</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radical (⋅OH), and malondialdehyde (MDA) levels alongside intensified lipoxygenase (LOX) activity and leaf relative membrane permeability (RMP). Histochemical analyses revealed higher lipid peroxidation, membrane damage as well as increased H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>•‒</sup> levels in the leaves of stressed plants. Micropalstic and As toxicity deteriorated anatomical structures, with diminished leaf and root epidermal thickness, cortex thickness, and vascular bundle area. However, TAE improved the antioxidant enzyme activities, endogenous ascorbate-glutathione pools, hydrogen sulfide and nitric oxide levels that reduced H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>⋅‒</sup>, ⋅OH, RMP, MDA, and activity of LOX. Taurine elevated osmolyte accumulation that protected membrane integrity, resulting in increased leaf relative water content and plant biomass. Plants supplemented with TAE demonstrated improved anatomical structures, resulting in diminished As uptake and its associated phytotoxicity. These findings highlight that TAE improved redox balance, osmoregulation, ion homeostasis, and anatomical structures, augmenting tolerance to As and MP toxicity in broccoli.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
{"title":"Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders.","authors":"Shrabani Das, Lokesh Murumulla, Pritha Ghosh, Suresh Challa","doi":"10.1007/s10534-025-00665-x","DOIUrl":"https://doi.org/10.1007/s10534-025-00665-x","url":null,"abstract":"<p><p>Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1007/s10534-025-00666-w
Deepa Kumari, Neena Nair, R S Bedwal
Zinc is crucial for several cellular functions in the biological system. Zinc insufficiency is one of the most prevalent types of micronutrient malnutrition in the world. Present study was conducted to detect testicular free radical levels i.e. lipid peroxidation (LPO), hydroperoxides, hydroxyl radical (OH.), nitric oxide (NO) and peroxynitrite (ONOO-) after short term dietary zinc deficiency and zinc supplementation. Pre-pubertal rats (n = 144) were divided into two groups with 6 sub-groups viz. zinc control (ZC, 100 µg/g zinc diet), pair-fed (PF, 100 µg/g zinc diet), zinc deficient (ZD, < 1.00 µg/g), zinc control supplementation (ZCS, 100 µg/g zinc diet), pair-fed supplementation (PFS, 100 µg/g zinc diet) and zinc deficient supplementation (ZDS, 100 µg/g zinc diet). Experiments were set for 2- and 4-weeks followed by 4 weeks of dietary zinc supplementation. Zinc deficient groups (2- and 4-weeks) exhibited significant (p < 0.05) increase in testicular LPO (TBARS), hydroperoxides, OH·, NO and ONOO- levels as compared to their respective control and pair-fed groups. Zinc deficient supplementation group (2ZDS) revealed a non-significant increase in OH·, NO and ONOO- levels while a significant increase in LPO and hydroperoxides levels. 4ZDS group showed a significant increase in the free radical levels, however the increase was less as compared to 4ZD group. Dietary zinc deficiency results in induction of cellular lipoperoxidation as well as causes stimulation of nitro-oxidative stress. Zinc supplementation (although for short duration signifying zinc redistribution in the testicular tissue) indicated positive response accounting for reduced free radical generation and also implicating its requirement in optimum level for sustentation of reproductive functions.
{"title":"Effects of short term dietary zinc deficiency and zinc supplementation on nitro-oxidative stress in testes of Wistar rats.","authors":"Deepa Kumari, Neena Nair, R S Bedwal","doi":"10.1007/s10534-025-00666-w","DOIUrl":"https://doi.org/10.1007/s10534-025-00666-w","url":null,"abstract":"<p><p>Zinc is crucial for several cellular functions in the biological system. Zinc insufficiency is one of the most prevalent types of micronutrient malnutrition in the world. Present study was conducted to detect testicular free radical levels i.e. lipid peroxidation (LPO), hydroperoxides, hydroxyl radical (OH<sup>.</sup>), nitric oxide (NO) and peroxynitrite (ONOO<sup>-</sup>) after short term dietary zinc deficiency and zinc supplementation. Pre-pubertal rats (n = 144) were divided into two groups with 6 sub-groups viz. zinc control (ZC, 100 µg/g zinc diet), pair-fed (PF, 100 µg/g zinc diet), zinc deficient (ZD, < 1.00 µg/g), zinc control supplementation (ZCS, 100 µg/g zinc diet), pair-fed supplementation (PFS, 100 µg/g zinc diet) and zinc deficient supplementation (ZDS, 100 µg/g zinc diet). Experiments were set for 2- and 4-weeks followed by 4 weeks of dietary zinc supplementation. Zinc deficient groups (2- and 4-weeks) exhibited significant (p < 0.05) increase in testicular LPO (TBARS), hydroperoxides, OH<sup>·</sup>, NO and ONOO<sup>-</sup> levels as compared to their respective control and pair-fed groups. Zinc deficient supplementation group (2ZDS) revealed a non-significant increase in OH<sup>·</sup>, NO and ONOO<sup>-</sup> levels while a significant increase in LPO and hydroperoxides levels. 4ZDS group showed a significant increase in the free radical levels, however the increase was less as compared to 4ZD group. Dietary zinc deficiency results in induction of cellular lipoperoxidation as well as causes stimulation of nitro-oxidative stress. Zinc supplementation (although for short duration signifying zinc redistribution in the testicular tissue) indicated positive response accounting for reduced free radical generation and also implicating its requirement in optimum level for sustentation of reproductive functions.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1007/s10534-024-00659-1
Ahmed Hamad, Pallavi Singh
Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.
{"title":"Boosting nutritional value: the role of iron fortification in meat and meat products.","authors":"Ahmed Hamad, Pallavi Singh","doi":"10.1007/s10534-024-00659-1","DOIUrl":"https://doi.org/10.1007/s10534-024-00659-1","url":null,"abstract":"<p><p>Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.
{"title":"Mo and Sn exposure associated with the increased of bone mineral density.","authors":"Jihui Wang, Xiyan Zhang, Yuzhuo Zeng, Jing Xu, Yong Zhang, Xingwen Lu, Fei Wang","doi":"10.1007/s10534-024-00662-6","DOIUrl":"https://doi.org/10.1007/s10534-024-00662-6","url":null,"abstract":"<p><p>Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exposure to individual metals has been inconsistently associated with adiposity. However, populations are exposed to more than one metal at a time, thus recent studies have been conducted to assess more comprehensively metal exposure through a mixture approach. To explore the association between Body Mass Index (BMI), Waist-Hip Ratio (WHIR) and Waist-Height Ratio (WHER) with urinary metal concentrations, using individual and mixture approaches, as well as identifying the most important metals within the mixtures, in women from Northern Mexico. This is a secondary cross-sectional analysis that included 439 women residents of five states in Northern Mexico. We weighed and measured participants to estimate BMI, WHIR, and WHER. We determined the concentrations of 19 urinary metals using inductively coupled plasma triple quadrupole. We used Weighted Quantile Sum regression to evaluate the association between adiposity indicators and metal mixtures, as well as to identify the metals of concern within the mixtures. We identified a mixture of metals that was negatively associated with BMI (ß:-0.96, 95% CI:-1.90,-0.01), where the most prominent were lead, molybdenum and magnesium. Furthermore, WHIR was negatively and suggestively associated with a mixture where the predominant metals were aluminum, cadmium, arsenic and nickel (ß:- 7.12, 95% CI: - 1.75,0.00), likewise WHER was associated with a mixture where the important metals were arsenic and nickel (ß: - 1.03, 95% CI: - 2.24,0.00). Our results provide evidence about the associations between metal mixtures and some anthropometric indicators of adiposity. Experimental studies are warranted to identify the underlying biological mechanisms.
{"title":"Metal mixtures and adiposity indicators in women from Northern Mexico.","authors":"Gisela Flores-Collado, Ángel Mérida-Ortega, Lizbeth López-Carrillo","doi":"10.1007/s10534-024-00661-7","DOIUrl":"https://doi.org/10.1007/s10534-024-00661-7","url":null,"abstract":"<p><p>Exposure to individual metals has been inconsistently associated with adiposity. However, populations are exposed to more than one metal at a time, thus recent studies have been conducted to assess more comprehensively metal exposure through a mixture approach. To explore the association between Body Mass Index (BMI), Waist-Hip Ratio (WHIR) and Waist-Height Ratio (WHER) with urinary metal concentrations, using individual and mixture approaches, as well as identifying the most important metals within the mixtures, in women from Northern Mexico. This is a secondary cross-sectional analysis that included 439 women residents of five states in Northern Mexico. We weighed and measured participants to estimate BMI, WHIR, and WHER. We determined the concentrations of 19 urinary metals using inductively coupled plasma triple quadrupole. We used Weighted Quantile Sum regression to evaluate the association between adiposity indicators and metal mixtures, as well as to identify the metals of concern within the mixtures. We identified a mixture of metals that was negatively associated with BMI (ß:-0.96, 95% CI:-1.90,-0.01), where the most prominent were lead, molybdenum and magnesium. Furthermore, WHIR was negatively and suggestively associated with a mixture where the predominant metals were aluminum, cadmium, arsenic and nickel (ß:- 7.12, 95% CI: - 1.75,0.00), likewise WHER was associated with a mixture where the important metals were arsenic and nickel (ß: - 1.03, 95% CI: - 2.24,0.00). Our results provide evidence about the associations between metal mixtures and some anthropometric indicators of adiposity. Experimental studies are warranted to identify the underlying biological mechanisms.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}