首页 > 最新文献

Biometals最新文献

英文 中文
Antidiabetic potential of vanadium complexes combined with olive leaf extracts: a viable approach to reduce metal toxicity.
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-27 DOI: 10.1007/s10534-025-00673-x
Daniele Sanna, Angela Fadda, Milena Casula, Grazia Palomba, Maria Cristina Sini, Maria Colombino, Carla Rozzo, Giuseppe Palmieri, Carmela Gallo, Dalila Carbone, Laura Siracusa, Luana Pulvirenti, Valeria Ugone

Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.

{"title":"Antidiabetic potential of vanadium complexes combined with olive leaf extracts: a viable approach to reduce metal toxicity.","authors":"Daniele Sanna, Angela Fadda, Milena Casula, Grazia Palomba, Maria Cristina Sini, Maria Colombino, Carla Rozzo, Giuseppe Palmieri, Carmela Gallo, Dalila Carbone, Laura Siracusa, Luana Pulvirenti, Valeria Ugone","doi":"10.1007/s10534-025-00673-x","DOIUrl":"https://doi.org/10.1007/s10534-025-00673-x","url":null,"abstract":"<p><p>Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of potential antiparasitic effect of ZnO nanoparticles on experimental cryptosporidiosis in immunosuppressed mice. 评估氧化锌纳米颗粒对免疫抑制小鼠实验性隐孢子虫病的潜在抗寄生虫作用。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s10534-025-00669-7
Salhah Hamed Alrefaee, Faizah S Aljohani, M El-Khatib, Yahya H Shahin, Bassma H Elwakil, Sendianah H Shahin, Sara H Akl, Esraa Abdelhamid Moneer, Amira Abd-Elfattah Darwish

Cryptosporidium is a food and water-borne enteric protozoan that infects a wide range of vertebrates, causing life-threatening complications, particularly in immunocompromised hosts. The absence of effective anti-cryptosporidial medications could be attributed to the parasite's specific intestinal location, as well as the lack of research into the mechanism by which the protozoan impairs intestine cellular function. The present work aimed to evaluate the in vivo efficacy of zinc nanoparticles in the treatment of experimental cryptosporidiosis infection in immunosuppressed mice. Small-sized ZnO-NPs revealed better treatment efficacy than Large-sized ZnO-NPs in all studies. Nitazoxanide-treated group revealed the highest percentage reduction of the oocyst's counts followed by the small-sized ZnO-NPs treated group. The small-sized ZnO-NPs treated mice group showed a minimal inflammatory effect in all examined treated tissues when compared to the infected non-treated group. The morphological structure of the oocysts was examined using SEM indicating variable degrees of morphological changes in the treated mice. Moreover, the levels of biochemical analyses were significantly lower in the treated group. The histopathological study revealed the significant effect of small-sized ZnO-NPs in treating cryptosporidiosis.

{"title":"Evaluation of potential antiparasitic effect of ZnO nanoparticles on experimental cryptosporidiosis in immunosuppressed mice.","authors":"Salhah Hamed Alrefaee, Faizah S Aljohani, M El-Khatib, Yahya H Shahin, Bassma H Elwakil, Sendianah H Shahin, Sara H Akl, Esraa Abdelhamid Moneer, Amira Abd-Elfattah Darwish","doi":"10.1007/s10534-025-00669-7","DOIUrl":"https://doi.org/10.1007/s10534-025-00669-7","url":null,"abstract":"<p><p>Cryptosporidium is a food and water-borne enteric protozoan that infects a wide range of vertebrates, causing life-threatening complications, particularly in immunocompromised hosts. The absence of effective anti-cryptosporidial medications could be attributed to the parasite's specific intestinal location, as well as the lack of research into the mechanism by which the protozoan impairs intestine cellular function. The present work aimed to evaluate the in vivo efficacy of zinc nanoparticles in the treatment of experimental cryptosporidiosis infection in immunosuppressed mice. Small-sized ZnO-NPs revealed better treatment efficacy than Large-sized ZnO-NPs in all studies. Nitazoxanide-treated group revealed the highest percentage reduction of the oocyst's counts followed by the small-sized ZnO-NPs treated group. The small-sized ZnO-NPs treated mice group showed a minimal inflammatory effect in all examined treated tissues when compared to the infected non-treated group. The morphological structure of the oocysts was examined using SEM indicating variable degrees of morphological changes in the treated mice. Moreover, the levels of biochemical analyses were significantly lower in the treated group. The histopathological study revealed the significant effect of small-sized ZnO-NPs in treating cryptosporidiosis.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review.
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-22 DOI: 10.1007/s10534-025-00671-z
Sanjib Manna, Sayed Mohammed Firdous

Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.

发育毒性是指生物体的正常发育受到干扰,这种情况可能发生在受孕前的亲代身上,也可能发生在成长中的生物本身身上。斑马鱼(Danio rerio)被用作评估化学品安全性和毒性的有效脊椎动物模型,因为斑马鱼可以在一年内多次繁殖,所以我们可以观察到下一代的毒性效应,而且由于斑马鱼从一个细胞阶段到成熟阶段都是透明的,所以我们可以观察到每个器官的发育过程,而且斑马鱼与人类有近 80% 的遗传相似性,具有相似的神经调节结构和多种神经递质。最近的研究致力于检测各种重金属(如镉、铬、镍、砷、铅、汞、铋、铁、锰和铊)以及微塑料对斑马鱼胚胎的危害,这些重金属除了在不同时间点共同暴露于环境可接受水平的每种金属之外,还能在不同时间点对斑马鱼胚胎造成危害。这些重金属会改变 mRNA 的表达水平,增加活性氧(ROS)的生成,降低抗氧化剂的表达,损害神经元功能,改变神经递质的释放,改变几种凋亡蛋白的表达,干扰不同的信号通路,降低发热率,增加畸形,如心包水肿、心脏水肿、鳍弯曲异常形成等。因此,我们得出结论,由于它参与食物链,也会对人类造成严重影响。
{"title":"Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review.","authors":"Sanjib Manna, Sayed Mohammed Firdous","doi":"10.1007/s10534-025-00671-z","DOIUrl":"https://doi.org/10.1007/s10534-025-00671-z","url":null,"abstract":"<p><p>Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of hydrogel loading with curcumin and silver nanoparticles: biocompatibilities and anti-biofilm activities.
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-20 DOI: 10.1007/s10534-025-00670-0
Wei Qing Hong, Wing-Hin Lee, Siti Hajar Musa, Nur Azzalia Kamaruzaman, Ching-Yee Loo

Chronic wound healing is associated with prolonged elevated inflammation and high levels of oxidative stress leading to cell death. The majority of wounds are colonized with antibiotic-resistant bacterial biofilms such as Pseudomonas aeruginosa and Staphylococcus aureus. An ideal wound treatment should include agents with antioxidant, anti-inflammatory, and antibiofilm behavior. Therefore, in this study, a combination of curcumin nanoparticle (Cur-NP) and silver nanoparticle (AgNP) (Cur-NP/AgNP) loaded PVA hydrogel was used to inhibit the bacterial attachment and subsequent biofilm formation of P. aeruginosa and S. aureus. Cur was known for its antioxidant and anti-inflammatory effect while being non-toxic to cells. Meanwhile, AgNP demonstrated superior anti-bacterial and antibiofilm activities against both P. aeruginosa and S. aureus. Cur-NP/AgNP loaded PVA hydrogels completely inhibited the bacterial attachment and biofilm formation, possibly due to synergistic effect of Cur-NPs and AgNPs in killing the bacterial cells. It should be highlighted that no surviving bacterial cells were noted for Cur-NP/AgNP loaded hydrogels. On the other hand, AgNPs or Cur-NPs alone loaded hydrogels were unable to achieve complete inhibition of biofilm formation, even though significant reduction in the biofilm mass was noted compared with control samples. Cur-NP and AgNP exerted oxidative-stress induced cell death in HaCaT cells via mitochondrial dysfunction, mitochondrial membrane potential (MMP) reduction, adenosine triphosphate inhibition, and increased cytochrome C release. The toxicity of formulation followed the decreasing trend: Cur-NP/AgNP < AgNPs alone < Cur-NPs alone. Taken together, the combination of Cur-NP/AgNP completely inhibited bacterial biofilm formation through bactericidal effect on the planktonic cells while exerted the least toxic effects towards skin cells.

{"title":"Evaluation of hydrogel loading with curcumin and silver nanoparticles: biocompatibilities and anti-biofilm activities.","authors":"Wei Qing Hong, Wing-Hin Lee, Siti Hajar Musa, Nur Azzalia Kamaruzaman, Ching-Yee Loo","doi":"10.1007/s10534-025-00670-0","DOIUrl":"https://doi.org/10.1007/s10534-025-00670-0","url":null,"abstract":"<p><p>Chronic wound healing is associated with prolonged elevated inflammation and high levels of oxidative stress leading to cell death. The majority of wounds are colonized with antibiotic-resistant bacterial biofilms such as Pseudomonas aeruginosa and Staphylococcus aureus. An ideal wound treatment should include agents with antioxidant, anti-inflammatory, and antibiofilm behavior. Therefore, in this study, a combination of curcumin nanoparticle (Cur-NP) and silver nanoparticle (AgNP) (Cur-NP/AgNP) loaded PVA hydrogel was used to inhibit the bacterial attachment and subsequent biofilm formation of P. aeruginosa and S. aureus. Cur was known for its antioxidant and anti-inflammatory effect while being non-toxic to cells. Meanwhile, AgNP demonstrated superior anti-bacterial and antibiofilm activities against both P. aeruginosa and S. aureus. Cur-NP/AgNP loaded PVA hydrogels completely inhibited the bacterial attachment and biofilm formation, possibly due to synergistic effect of Cur-NPs and AgNPs in killing the bacterial cells. It should be highlighted that no surviving bacterial cells were noted for Cur-NP/AgNP loaded hydrogels. On the other hand, AgNPs or Cur-NPs alone loaded hydrogels were unable to achieve complete inhibition of biofilm formation, even though significant reduction in the biofilm mass was noted compared with control samples. Cur-NP and AgNP exerted oxidative-stress induced cell death in HaCaT cells via mitochondrial dysfunction, mitochondrial membrane potential (MMP) reduction, adenosine triphosphate inhibition, and increased cytochrome C release. The toxicity of formulation followed the decreasing trend: Cur-NP/AgNP < AgNPs alone < Cur-NPs alone. Taken together, the combination of Cur-NP/AgNP completely inhibited bacterial biofilm formation through bactericidal effect on the planktonic cells while exerted the least toxic effects towards skin cells.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taurine decreases arsenic and microplastic toxicity in broccoli (Brassica oleracea L.) through functional and microstructural alterations.
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1007/s10534-025-00667-9
Shahar Yar, Muhammad Arslan Ashraf, Rizwan Rasheed, Umer Farooq, Arslan Hafeez, Shafaqat Ali, Mudassar Shahid, Pallab K Sarker

Contamination of vegetables with heavy metals and microplastics is a major environmental and human health concern. This study investigated the role of taurine (TAE) in alleviating arsenic (As) and polyvinyl chloride microplastic (MP) toxicity in broccoli plants. The experiment followed a completely randomized design with four replicates per treatment. Plants were grown in soil spiked with MP (200 mg kg‒1), As (42.8 mg kg‒1), and their combination (As + MP) with or without taurine (TAE; 100 mg L‒1) foliar supplementation. Results demonstrated that MP, As, and As + MP toxicity markedly decreased growth, chlorophyll content, photosynthesis, and nutrient uptake in broccoli plants. Exposure to individual or combined MP and As increased oxidative damage, indicated by elevated methylglyoxal (MG), superoxide radical (O2⋅‒), hydrogen peroxide (H2O2), hydroxyl radical (⋅OH), and malondialdehyde (MDA) levels alongside intensified lipoxygenase (LOX) activity and leaf relative membrane permeability (RMP). Histochemical analyses revealed higher lipid peroxidation, membrane damage as well as increased H2O2 and O2•‒ levels in the leaves of stressed plants. Micropalstic and As toxicity deteriorated anatomical structures, with diminished leaf and root epidermal thickness, cortex thickness, and vascular bundle area. However, TAE improved the antioxidant enzyme activities, endogenous ascorbate-glutathione pools, hydrogen sulfide and nitric oxide levels that reduced H2O2, O2⋅‒, ⋅OH, RMP, MDA, and activity of LOX. Taurine elevated osmolyte accumulation that protected membrane integrity, resulting in increased leaf relative water content and plant biomass. Plants supplemented with TAE demonstrated improved anatomical structures, resulting in diminished As uptake and its associated phytotoxicity. These findings highlight that TAE improved redox balance, osmoregulation, ion homeostasis, and anatomical structures, augmenting tolerance to As and MP toxicity in broccoli.

{"title":"Taurine decreases arsenic and microplastic toxicity in broccoli (Brassica oleracea L.) through functional and microstructural alterations.","authors":"Shahar Yar, Muhammad Arslan Ashraf, Rizwan Rasheed, Umer Farooq, Arslan Hafeez, Shafaqat Ali, Mudassar Shahid, Pallab K Sarker","doi":"10.1007/s10534-025-00667-9","DOIUrl":"https://doi.org/10.1007/s10534-025-00667-9","url":null,"abstract":"<p><p>Contamination of vegetables with heavy metals and microplastics is a major environmental and human health concern. This study investigated the role of taurine (TAE) in alleviating arsenic (As) and polyvinyl chloride microplastic (MP) toxicity in broccoli plants. The experiment followed a completely randomized design with four replicates per treatment. Plants were grown in soil spiked with MP (200 mg kg<sup>‒1</sup>), As (42.8 mg kg<sup>‒1</sup>), and their combination (As + MP) with or without taurine (TAE; 100 mg L<sup>‒1</sup>) foliar supplementation. Results demonstrated that MP, As, and As + MP toxicity markedly decreased growth, chlorophyll content, photosynthesis, and nutrient uptake in broccoli plants. Exposure to individual or combined MP and As increased oxidative damage, indicated by elevated methylglyoxal (MG), superoxide radical (O<sub>2</sub><sup>⋅‒</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), hydroxyl radical (⋅OH), and malondialdehyde (MDA) levels alongside intensified lipoxygenase (LOX) activity and leaf relative membrane permeability (RMP). Histochemical analyses revealed higher lipid peroxidation, membrane damage as well as increased H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>•‒</sup> levels in the leaves of stressed plants. Micropalstic and As toxicity deteriorated anatomical structures, with diminished leaf and root epidermal thickness, cortex thickness, and vascular bundle area. However, TAE improved the antioxidant enzyme activities, endogenous ascorbate-glutathione pools, hydrogen sulfide and nitric oxide levels that reduced H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>⋅‒</sup>, ⋅OH, RMP, MDA, and activity of LOX. Taurine elevated osmolyte accumulation that protected membrane integrity, resulting in increased leaf relative water content and plant biomass. Plants supplemented with TAE demonstrated improved anatomical structures, resulting in diminished As uptake and its associated phytotoxicity. These findings highlight that TAE improved redox balance, osmoregulation, ion homeostasis, and anatomical structures, augmenting tolerance to As and MP toxicity in broccoli.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders.
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-17 DOI: 10.1007/s10534-025-00665-x
Shrabani Das, Lokesh Murumulla, Pritha Ghosh, Suresh Challa

Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.

{"title":"Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders.","authors":"Shrabani Das, Lokesh Murumulla, Pritha Ghosh, Suresh Challa","doi":"10.1007/s10534-025-00665-x","DOIUrl":"https://doi.org/10.1007/s10534-025-00665-x","url":null,"abstract":"<p><p>Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of short term dietary zinc deficiency and zinc supplementation on nitro-oxidative stress in testes of Wistar rats. 短期饮食缺锌和补锌对 Wistar 大鼠睾丸硝基氧化应激的影响
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-10 DOI: 10.1007/s10534-025-00666-w
Deepa Kumari, Neena Nair, R S Bedwal

Zinc is crucial for several cellular functions in the biological system. Zinc insufficiency is one of the most prevalent types of micronutrient malnutrition in the world. Present study was conducted to detect testicular free radical levels i.e. lipid peroxidation (LPO), hydroperoxides, hydroxyl radical (OH.), nitric oxide (NO) and peroxynitrite (ONOO-) after short term dietary zinc deficiency and zinc supplementation. Pre-pubertal rats (n = 144) were divided into two groups with 6 sub-groups viz. zinc control (ZC, 100 µg/g zinc diet), pair-fed (PF, 100 µg/g zinc diet), zinc deficient (ZD, < 1.00 µg/g), zinc control supplementation (ZCS, 100 µg/g zinc diet), pair-fed supplementation (PFS, 100 µg/g zinc diet) and zinc deficient supplementation (ZDS, 100 µg/g zinc diet). Experiments were set for 2- and 4-weeks followed by 4 weeks of dietary zinc supplementation. Zinc deficient groups (2- and 4-weeks) exhibited significant (p < 0.05) increase in testicular LPO (TBARS), hydroperoxides, OH·, NO and ONOO- levels as compared to their respective control and pair-fed groups. Zinc deficient supplementation group (2ZDS) revealed a non-significant increase in OH·, NO and ONOO- levels while a significant increase in LPO and hydroperoxides levels. 4ZDS group showed a significant increase in the free radical levels, however the increase was less as compared to 4ZD group. Dietary zinc deficiency results in induction of cellular lipoperoxidation as well as causes stimulation of nitro-oxidative stress. Zinc supplementation (although for short duration signifying zinc redistribution in the testicular tissue) indicated positive response accounting for reduced free radical generation and also implicating its requirement in optimum level for sustentation of reproductive functions.

{"title":"Effects of short term dietary zinc deficiency and zinc supplementation on nitro-oxidative stress in testes of Wistar rats.","authors":"Deepa Kumari, Neena Nair, R S Bedwal","doi":"10.1007/s10534-025-00666-w","DOIUrl":"https://doi.org/10.1007/s10534-025-00666-w","url":null,"abstract":"<p><p>Zinc is crucial for several cellular functions in the biological system. Zinc insufficiency is one of the most prevalent types of micronutrient malnutrition in the world. Present study was conducted to detect testicular free radical levels i.e. lipid peroxidation (LPO), hydroperoxides, hydroxyl radical (OH<sup>.</sup>), nitric oxide (NO) and peroxynitrite (ONOO<sup>-</sup>) after short term dietary zinc deficiency and zinc supplementation. Pre-pubertal rats (n = 144) were divided into two groups with 6 sub-groups viz. zinc control (ZC, 100 µg/g zinc diet), pair-fed (PF, 100 µg/g zinc diet), zinc deficient (ZD, < 1.00 µg/g), zinc control supplementation (ZCS, 100 µg/g zinc diet), pair-fed supplementation (PFS, 100 µg/g zinc diet) and zinc deficient supplementation (ZDS, 100 µg/g zinc diet). Experiments were set for 2- and 4-weeks followed by 4 weeks of dietary zinc supplementation. Zinc deficient groups (2- and 4-weeks) exhibited significant (p < 0.05) increase in testicular LPO (TBARS), hydroperoxides, OH<sup>·</sup>, NO and ONOO<sup>-</sup> levels as compared to their respective control and pair-fed groups. Zinc deficient supplementation group (2ZDS) revealed a non-significant increase in OH<sup>·</sup>, NO and ONOO<sup>-</sup> levels while a significant increase in LPO and hydroperoxides levels. 4ZDS group showed a significant increase in the free radical levels, however the increase was less as compared to 4ZD group. Dietary zinc deficiency results in induction of cellular lipoperoxidation as well as causes stimulation of nitro-oxidative stress. Zinc supplementation (although for short duration signifying zinc redistribution in the testicular tissue) indicated positive response accounting for reduced free radical generation and also implicating its requirement in optimum level for sustentation of reproductive functions.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting nutritional value: the role of iron fortification in meat and meat products. 提高营养价值:强化铁在肉类和肉制品中的作用。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-21 DOI: 10.1007/s10534-024-00659-1
Ahmed Hamad, Pallavi Singh

Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.

缺铁是一个影响全球数百万人的普遍营养问题,导致包括贫血在内的各种健康问题。肉类和肉制品的铁强化已成为对抗这一问题的有效策略。本文综述了铁强化的过程和益处,重点介绍了适合强化的铁化合物类型,如硫酸亚铁和焦磷酸铁,它们的生物利用度,以及它们对肉制品感官和营养品质的影响。技术挑战和解决方案,包括包封,螯合和微包封技术,已被检查,以尽量减少其对感官质量的负面影响。本综述还讨论了管理铁强化和消费者接受的监管框架。讨论了测定铁含量的分析方法,如分光光度法和比色法。虽然铁强化肉制品对健康有益,但感官方面和消费者接受度是重要的考虑因素。这篇综述提供了一个全面的理解的作用和意义,铁强化在肉制品作为一种公共卫生干预,以解决缺铁。
{"title":"Boosting nutritional value: the role of iron fortification in meat and meat products.","authors":"Ahmed Hamad, Pallavi Singh","doi":"10.1007/s10534-024-00659-1","DOIUrl":"https://doi.org/10.1007/s10534-024-00659-1","url":null,"abstract":"<p><p>Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products. Technological challenges and solutions, including encapsulation, chelation, and microencapsulation techniques, have been examined to minimize their negative impacts on sensory qualities. This review also discusses the regulatory framework governing iron fortification and consumer acceptance. Analytical methods for determining iron content, such as spectrophotometric and colorimetric detection, are discussed. Although iron-fortified meat products offer health benefits, sensory aspects and consumer acceptance are important considerations. This review provides a comprehensive understanding of the role and significance of iron fortification in meat products as a public health intervention to address iron deficiency.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mo and Sn exposure associated with the increased of bone mineral density. 钼锡暴露与骨密度增高有关。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1007/s10534-024-00662-6
Jihui Wang, Xiyan Zhang, Yuzhuo Zeng, Jing Xu, Yong Zhang, Xingwen Lu, Fei Wang

Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.

骨矿物质密度(BMD)与骨骼健康密切相关,但对其与人体金属之间关系的研究仍然有限。为了探讨金属暴露与骨密度之间的关系,对中国东部159名参与者进行了研究。收集尿液和血液样本,并使用电感耦合等离子体质谱(ICP-MS)测量样本中20种金属的水平。采用二元Logistic回归模型(BLR)和广义线性模型(GLM)探讨金属与骨密度之间的关系。利用贝叶斯核机回归(BKMR)模型进一步探讨多种金属相互作用对骨密度的影响。选取6种金属(Mn、Co、As、Se、Mo、Cd),采用Wilcoxon和Spearman试验比较血、尿浓度。在单金属模型中,尿液中四种金属(As、Mo、Se、Sn)与BMD之间的BLR和GLM普遍呈显著正相关。血、尿5种金属(Mn、Co、As、Se、Mo)呈较强相关性(P≤0.05)。BKMR模型表明尿Mo和Sn具有主要的协同作用,同时暴露于这些金属的增加与BMD的升高趋势有关。这些发现表明,接触金属与人体骨密度升高有关。为了更好地了解金属对骨骼健康的影响,需要进一步研究这些金属的共同作用及其相互作用。
{"title":"Mo and Sn exposure associated with the increased of bone mineral density.","authors":"Jihui Wang, Xiyan Zhang, Yuzhuo Zeng, Jing Xu, Yong Zhang, Xingwen Lu, Fei Wang","doi":"10.1007/s10534-024-00662-6","DOIUrl":"https://doi.org/10.1007/s10534-024-00662-6","url":null,"abstract":"<p><p>Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal mixtures and adiposity indicators in women from Northern Mexico. 墨西哥北部妇女的金属混合物与肥胖指标。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1007/s10534-024-00661-7
Gisela Flores-Collado, Ángel Mérida-Ortega, Lizbeth López-Carrillo

Exposure to individual metals has been inconsistently associated with adiposity. However, populations are exposed to more than one metal at a time, thus recent studies have been conducted to assess more comprehensively metal exposure through a mixture approach. To explore the association between Body Mass Index (BMI), Waist-Hip Ratio (WHIR) and Waist-Height Ratio (WHER) with urinary metal concentrations, using individual and mixture approaches, as well as identifying the most important metals within the mixtures, in women from Northern Mexico. This is a secondary cross-sectional analysis that included 439 women residents of five states in Northern Mexico. We weighed and measured participants to estimate BMI, WHIR, and WHER. We determined the concentrations of 19 urinary metals using inductively coupled plasma triple quadrupole. We used Weighted Quantile Sum regression to evaluate the association between adiposity indicators and metal mixtures, as well as to identify the metals of concern within the mixtures. We identified a mixture of metals that was negatively associated with BMI (ß:-0.96, 95% CI:-1.90,-0.01), where the most prominent were lead, molybdenum and magnesium. Furthermore, WHIR was negatively and suggestively associated with a mixture where the predominant metals were aluminum, cadmium, arsenic and nickel (ß:- 7.12, 95% CI: - 1.75,0.00), likewise WHER was associated with a mixture where the important metals were arsenic and nickel (ß: - 1.03, 95% CI: - 2.24,0.00). Our results provide evidence about the associations between metal mixtures and some anthropometric indicators of adiposity. Experimental studies are warranted to identify the underlying biological mechanisms.

接触某种金属与肥胖之间的关系并不一致。然而,人们一次接触到一种以上的金属,因此最近进行了研究,以通过混合方法更全面地评估金属接触。探讨身体质量指数(BMI)、腰臀比(WHIR)和腰高比(WHER)与墨西哥北部妇女尿液金属浓度之间的关系,采用个体和混合方法,并确定混合物中最重要的金属。这是一项二次横断面分析,包括墨西哥北部五个州的439名女性居民。我们对参与者进行称重和测量,以估计BMI、WHIR和WHER。我们用电感耦合等离子体三重四极杆测定了19种尿金属的浓度。我们使用加权分位数和回归来评估肥胖指标与金属混合物之间的关系,并确定混合物中关注的金属。我们发现了与BMI呈负相关的金属混合物(ß:-0.96, 95% CI:-1.90,-0.01),其中最显著的是铅、钼和镁。此外,WHIR与主要金属为铝、镉、砷和镍的混合物呈负相关(ß:- 7.12, 95% CI: - 1.75,0.00),同样,WHER与重要金属为砷和镍的混合物相关(ß:- 1.03, 95% CI: - 2.24,0.00)。我们的研究结果为金属混合物和一些肥胖人体测量指标之间的联系提供了证据。有必要进行实验研究以确定潜在的生物学机制。
{"title":"Metal mixtures and adiposity indicators in women from Northern Mexico.","authors":"Gisela Flores-Collado, Ángel Mérida-Ortega, Lizbeth López-Carrillo","doi":"10.1007/s10534-024-00661-7","DOIUrl":"https://doi.org/10.1007/s10534-024-00661-7","url":null,"abstract":"<p><p>Exposure to individual metals has been inconsistently associated with adiposity. However, populations are exposed to more than one metal at a time, thus recent studies have been conducted to assess more comprehensively metal exposure through a mixture approach. To explore the association between Body Mass Index (BMI), Waist-Hip Ratio (WHIR) and Waist-Height Ratio (WHER) with urinary metal concentrations, using individual and mixture approaches, as well as identifying the most important metals within the mixtures, in women from Northern Mexico. This is a secondary cross-sectional analysis that included 439 women residents of five states in Northern Mexico. We weighed and measured participants to estimate BMI, WHIR, and WHER. We determined the concentrations of 19 urinary metals using inductively coupled plasma triple quadrupole. We used Weighted Quantile Sum regression to evaluate the association between adiposity indicators and metal mixtures, as well as to identify the metals of concern within the mixtures. We identified a mixture of metals that was negatively associated with BMI (ß:-0.96, 95% CI:-1.90,-0.01), where the most prominent were lead, molybdenum and magnesium. Furthermore, WHIR was negatively and suggestively associated with a mixture where the predominant metals were aluminum, cadmium, arsenic and nickel (ß:- 7.12, 95% CI: - 1.75,0.00), likewise WHER was associated with a mixture where the important metals were arsenic and nickel (ß: - 1.03, 95% CI: - 2.24,0.00). Our results provide evidence about the associations between metal mixtures and some anthropometric indicators of adiposity. Experimental studies are warranted to identify the underlying biological mechanisms.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biometals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1