Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-07-29 DOI:10.1007/s40820-024-01466-6
Jianye Li, Hao Wang, Yibing Luo, Zijing Zhou, He Zhang, Huizhi Chen, Kai Tao, Chuan Liu, Lingxing Zeng, Fengwei Huo, Jin Wu
{"title":"Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm","authors":"Jianye Li,&nbsp;Hao Wang,&nbsp;Yibing Luo,&nbsp;Zijing Zhou,&nbsp;He Zhang,&nbsp;Huizhi Chen,&nbsp;Kai Tao,&nbsp;Chuan Liu,&nbsp;Lingxing Zeng,&nbsp;Fengwei Huo,&nbsp;Jin Wu","doi":"10.1007/s40820-024-01466-6","DOIUrl":null,"url":null,"abstract":"<div><h2> Highlights</h2><div>\n \n <ul>\n <li>\n <p>A novel organohydrogel-based multimodal e-skin with excellent sensing performance for temperature, humidity, pressure, proximity, and NO<sub>2</sub> is proposed for the first time, showing powerful sensing capabilities beyond natural skin.</p>\n </li>\n <li>\n <p>The developed multimodal e-skin exhibited extraordinary sensing performance at room temperature, including fast pressure response time (0.2 s), high temperature sensitivity (9.38% °C<sup>-1</sup>), a wide range of humidity response (22%–98% RH), high NO<sub>2</sub> sensitivity (254% ppm<sup>-1</sup>), a low detection limit (11.1 ppb NO<sub>2</sub>) and the abilities to sense the proximity of objects accurately, which are yet achieved by previous e-skins.</p>\n </li>\n <li>\n <p>The multimodal e-skin was combined with the deep neural network algorithm and wireless alarm circuit to achieve zero-error classification of different objects and rapid response to NO<sub>x</sub> leak incidents, proving the feasibility of the e-skin-assisted rescue robot for post-earthquake rescue.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01466-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • A novel organohydrogel-based multimodal e-skin with excellent sensing performance for temperature, humidity, pressure, proximity, and NO2 is proposed for the first time, showing powerful sensing capabilities beyond natural skin.

  • The developed multimodal e-skin exhibited extraordinary sensing performance at room temperature, including fast pressure response time (0.2 s), high temperature sensitivity (9.38% °C-1), a wide range of humidity response (22%–98% RH), high NO2 sensitivity (254% ppm-1), a low detection limit (11.1 ppb NO2) and the abilities to sense the proximity of objects accurately, which are yet achieved by previous e-skins.

  • The multimodal e-skin was combined with the deep neural network algorithm and wireless alarm circuit to achieve zero-error classification of different objects and rapid response to NOx leak incidents, proving the feasibility of the e-skin-assisted rescue robot for post-earthquake rescue.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于环境物体识别和无线有毒气体报警的人工智能增强型和硬件支持的多模态电子皮肤。
由于废墟结构不稳定和余震不断,震后救援任务充满挑战。目前的救援机器人大多缺乏与环境互动的能力,导致救援效率低下。此次提出的多模态电子皮肤(e-skin)不仅再现了自然皮肤的压力、温度和湿度感知能力,还开发了自然皮肤之外的感知功能--感知物体的接近程度和二氧化氮气体。基于 Ecoflex 和有机水凝胶的多层堆叠结构使电子皮肤具有与天然皮肤相似的机械性能。集成了多模态电子皮肤和人工智能(AI)算法的救援机器人具有很强的环境感知能力,能准确分辨物体并通过抓取识别人体肢体,为震后自动救援奠定了基础。此外,电子皮肤与二氧化氮无线报警电路的结合,使机器人能够实时感知环境中的有毒气体,从而采取相应措施保护被困人员免受有毒环境的伤害。由人工智能算法和硬件电路驱动的多模态电子皮肤具有强大的环境感知和信息处理能力,作为与物理世界交互的界面,极大地拓展了智能机器人的应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Wafer-Scale Ag2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage Direct Photolithography of WOx Nanoparticles for High-Resolution Non-Emissive Displays Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1