Broadband surface wave manipulation by periodic barriers in unsaturated soil.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-09-09 Epub Date: 2024-07-29 DOI:10.1098/rsta.2023.0372
Liangliang Wu, Zhifei Shi
{"title":"Broadband surface wave manipulation by periodic barriers in unsaturated soil.","authors":"Liangliang Wu, Zhifei Shi","doi":"10.1098/rsta.2023.0372","DOIUrl":null,"url":null,"abstract":"<p><p>Periodic wave barriers have been widely used to manipulate elastic waves propagating in saturated and single-phase soil due to their attenuation zone properties. However, it is difficult to promote application of periodic barriers in unsaturated soils due to their complex constitutive relationship. In this study, manipulation of surface waves by periodic in-filled trench barriers in unsaturated soil has been studied based on the periodic theory. The dispersion relations of a periodic structure for surface waves in unsaturated soil are determined. The attenuation mechanism of evanescent surface waves is revealed. Next, the effects of several key parameters of unsaturated soil on the attenuation zones of the periodic in-filled trench barriers are comprehensively discussed. It is found that in a particular range for material parameter, the surface waves are attenuated over the entire frequency range due to the viscosity of fluid. Finally, a periodic in-filled trench barrier is designed according to a field test of ground vibration induced by a train, and its performances in mitigating surface waves propagating in unsaturated and saturated soils are conducted and compared by conducting analysis in time domain. This investigation provides a new insight for manipulating surface waves by periodic barriers. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0372","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic wave barriers have been widely used to manipulate elastic waves propagating in saturated and single-phase soil due to their attenuation zone properties. However, it is difficult to promote application of periodic barriers in unsaturated soils due to their complex constitutive relationship. In this study, manipulation of surface waves by periodic in-filled trench barriers in unsaturated soil has been studied based on the periodic theory. The dispersion relations of a periodic structure for surface waves in unsaturated soil are determined. The attenuation mechanism of evanescent surface waves is revealed. Next, the effects of several key parameters of unsaturated soil on the attenuation zones of the periodic in-filled trench barriers are comprehensively discussed. It is found that in a particular range for material parameter, the surface waves are attenuated over the entire frequency range due to the viscosity of fluid. Finally, a periodic in-filled trench barrier is designed according to a field test of ground vibration induced by a train, and its performances in mitigating surface waves propagating in unsaturated and saturated soils are conducted and compared by conducting analysis in time domain. This investigation provides a new insight for manipulating surface waves by periodic barriers. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非饱和土壤中周期性障碍物对宽带表面波的操控。
周期波屏障因其衰减区特性,已被广泛用于控制饱和土和单相土中传播的弹性波。然而,由于非饱和土的构成关系复杂,很难在非饱和土中推广应用周期性波屏障。本研究以周期理论为基础,研究了非饱和土壤中周期性填沟屏障对表面波的操纵。确定了非饱和土壤中周期性结构表面波的频散关系。揭示了蒸发面波的衰减机制。接下来,全面讨论了非饱和土壤的几个关键参数对周期性内填沟槽屏障衰减区的影响。研究发现,在特定的材料参数范围内,由于流体的粘性,面波在整个频率范围内都会被衰减。最后,根据火车诱发地面振动的现场试验设计了一种周期性内填沟槽屏障,并通过时域分析对其在减缓非饱和和饱和土壤中传播的面波方面的性能进行了比较。这项研究为利用周期性屏障操纵面波提供了新的见解。本文是主题 "弹性和声学超材料科学的最新发展(第一部分)"的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Alkali metal cations enhance CO2 reduction by a Co molecular complex in a bipolar membrane electrolyzer. An alternative to petrochemicals: biomass electrovalorization. Carbon dioxide and hydrogen as building blocks for a sustainable interface of energy and chemistry. CO2 hydrogenation to methanol over Pt functionalized Hf-UiO-67 versus Zr-UiO-67. Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1