Xian Rui Wang, Jia Ting Zhang, Xiao Han Guo, Ming Hua Li, Wen Guang Jing, Xian Long Cheng, Feng Wei
{"title":"Digital identification of Aucklandiae radix, Vladimiriae radix, and Inulae radix based on multivariate algorithms and UHPLC-QTOF-MS analysis.","authors":"Xian Rui Wang, Jia Ting Zhang, Xiao Han Guo, Ming Hua Li, Wen Guang Jing, Xian Long Cheng, Feng Wei","doi":"10.1002/pca.3421","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The identification of Aucklandiae Radix (AR), Vladimiriae Radix (VR), and Inulae Radix (IR) based on traits and microscopic features is susceptible to the state of samples and the subjective awareness of personnel, and the identification based on a few or single chemical compositions is a cumbersome and time-consuming procedure and fails to rationally and effectively utilize the information of unknown components and is not specificity enough.</p><p><strong>Objectives: </strong>This study aimed to improve the identification efficiency, strengthen supervision, and realize digital identification of three Chinese medicines. Ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) combined with multivariate algorithms was used to explore the digital identification of AR, VR, and IR.</p><p><strong>Materials and methods: </strong>UHPLC-QTOF-MS was used to analyze AR, VR, and IR. The MS data combined with multivariate algorithms such as partial least squares discrimination analysis (PLS-DA) and artificial neural networks (ANNs) was used to filter important variables and data modeling. Finally, the optimal model was selected for the digital identification of three herbs.</p><p><strong>Results: </strong>The results showed that three herbs can be distinguished on the whole level, and through feature screening, 591 characteristic variables combined with multivariate algorithms to construct data models. The ANN model was the best with accuracy = 0.983, precision = 0.984, and external verification showed the reliability and practicability of ANN model.</p><p><strong>Conclusion: </strong>ANN model combined with MS data is of great significance for tdigital identification of AR, VR, and IR. It is an important reference for developing the digital identification of traditional Chinese medicines at the individual level based on UHPLC-QTOF-MS and multivariate algorithms.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3421","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The identification of Aucklandiae Radix (AR), Vladimiriae Radix (VR), and Inulae Radix (IR) based on traits and microscopic features is susceptible to the state of samples and the subjective awareness of personnel, and the identification based on a few or single chemical compositions is a cumbersome and time-consuming procedure and fails to rationally and effectively utilize the information of unknown components and is not specificity enough.
Objectives: This study aimed to improve the identification efficiency, strengthen supervision, and realize digital identification of three Chinese medicines. Ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) combined with multivariate algorithms was used to explore the digital identification of AR, VR, and IR.
Materials and methods: UHPLC-QTOF-MS was used to analyze AR, VR, and IR. The MS data combined with multivariate algorithms such as partial least squares discrimination analysis (PLS-DA) and artificial neural networks (ANNs) was used to filter important variables and data modeling. Finally, the optimal model was selected for the digital identification of three herbs.
Results: The results showed that three herbs can be distinguished on the whole level, and through feature screening, 591 characteristic variables combined with multivariate algorithms to construct data models. The ANN model was the best with accuracy = 0.983, precision = 0.984, and external verification showed the reliability and practicability of ANN model.
Conclusion: ANN model combined with MS data is of great significance for tdigital identification of AR, VR, and IR. It is an important reference for developing the digital identification of traditional Chinese medicines at the individual level based on UHPLC-QTOF-MS and multivariate algorithms.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.