Unsupervised Bayesian classification for models with scalar and functional covariates.

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series C-Applied Statistics Pub Date : 2024-02-07 eCollection Date: 2024-06-01 DOI:10.1093/jrsssc/qlae006
Nancy L Garcia, Mariana Rodrigues-Motta, Helio S Migon, Eva Petkova, Thaddeus Tarpey, R Todd Ogden, Julio O Giordano, Martin M Perez
{"title":"Unsupervised Bayesian classification for models with scalar and functional covariates.","authors":"Nancy L Garcia, Mariana Rodrigues-Motta, Helio S Migon, Eva Petkova, Thaddeus Tarpey, R Todd Ogden, Julio O Giordano, Martin M Perez","doi":"10.1093/jrsssc/qlae006","DOIUrl":null,"url":null,"abstract":"<p><p>We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对标量和功能协变量模型的无监督贝叶斯分类。
我们考虑通过一个潜在的多项式变量进行无监督分类,该变量将标量响应归类到包含标量和函数协变量的混合物模型的 L 个分量之一。这一过程可视为一个分层模型,第一层根据参数分布的混合物对标量响应进行建模,第二层通过包含功能和标量协变量的广义线性模型对混合物概率进行建模。将函数协变量视为向量的传统方法不仅存在维度诅咒,因为函数协变量的测量间隔可能非常小,导致模型高度参数化,而且没有考虑到数据的性质。我们使用基扩展来降低维度,并使用贝叶斯方法来估计参数,同时提供潜在分类向量的预测。该方法由两个现有方法不易处理的数据实例激发。第一个例子涉及识别临床试验中的安慰剂应答者(正态混合模型),另一个例子涉及预测挤奶奶牛的疾病(泊松模型的零膨胀混合)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
期刊最新文献
Inverse set estimation and inversion of simultaneous confidence intervals. Population-level task-evoked functional connectivity via Fourier analysis. Testing unit root non-stationarity in the presence of missing data in univariate time series of mobile health studies. Revisiting the effects of maternal education on adolescents' academic performance: Doubly robust estimation in a network-based observational study. Unsupervised Bayesian classification for models with scalar and functional covariates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1