Ceyda Caliskan, Deniz Simsek, Charlotte Leese, Ciara Doran, Elizabeth Seward, Andrew A Peden, Bazbek Davletov
{"title":"A sensitive cell-based assay for testing potency of botulinum neurotoxin type A","authors":"Ceyda Caliskan, Deniz Simsek, Charlotte Leese, Ciara Doran, Elizabeth Seward, Andrew A Peden, Bazbek Davletov","doi":"10.14573/altex.2312071","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxin type A (BoNT/A) is a biopharmaceutic widely used for the treatment of neurological diseases and in aesthetic medicine to achieve months-long paralysis of target muscles and glands. Large numbers of mice are used in the mouse bioassay (MBA) for various botulinum-related applications including batch release potency testing, antitoxin testing, countermeasure development, and basic research. BoNT/A intoxication causes severe suffering to the mice used for testing, and application-specific, non-animal alternatives are urgently needed. Cell-based assays (CBA) need to replicate all the physiological steps of botulinum intoxication, comprising neuronal binding, internalization, endosomal escape, and cleavage of synaptosomal-associated protein of 25 kDa (SNAP25). However, the CBA currently in use have limitations. In this study we show that LAN5 cells, a human neuroblastoma-derived cell line, are sensitive to BoNT/A and can be engineered to express a recombinant NanoLuciferase (NanoLuc)-tagged SNAP25 reporter molecule. On exposure, the reporter molecule is cleaved and releases a NanoLuc-SNAP25 fragment that can be captured on a 96-well plate for quantitative luminometry using a cleavage-specific SNAP25 antibody. We demonstrate, using purified BoNT/A and a commercial BoNT/A product, that the sensitivity of this new cell-based assay is in the fM range, comparable to that of the MBA. The new assay could replace the MBA in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"605-616"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2312071","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Botulinum neurotoxin type A (BoNT/A) is a biopharmaceutic widely used for the treatment of neurological diseases and in aesthetic medicine to achieve months-long paralysis of target muscles and glands. Large numbers of mice are used in the mouse bioassay (MBA) for various botulinum-related applications including batch release potency testing, antitoxin testing, countermeasure development, and basic research. BoNT/A intoxication causes severe suffering to the mice used for testing, and application-specific, non-animal alternatives are urgently needed. Cell-based assays (CBA) need to replicate all the physiological steps of botulinum intoxication, comprising neuronal binding, internalization, endosomal escape, and cleavage of synaptosomal-associated protein of 25 kDa (SNAP25). However, the CBA currently in use have limitations. In this study we show that LAN5 cells, a human neuroblastoma-derived cell line, are sensitive to BoNT/A and can be engineered to express a recombinant NanoLuciferase (NanoLuc)-tagged SNAP25 reporter molecule. On exposure, the reporter molecule is cleaved and releases a NanoLuc-SNAP25 fragment that can be captured on a 96-well plate for quantitative luminometry using a cleavage-specific SNAP25 antibody. We demonstrate, using purified BoNT/A and a commercial BoNT/A product, that the sensitivity of this new cell-based assay is in the fM range, comparable to that of the MBA. The new assay could replace the MBA in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.
期刊介绍:
ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.