Odorant transport in a hagfish

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.1016/j.cbpa.2024.111711
Todor G. Cross , Olivia C. Mayo , Graham S. Martin , Matthew P. Cross , David K. Ludlow , Katharine H. Fraser , Jonathan P.L. Cox
{"title":"Odorant transport in a hagfish","authors":"Todor G. Cross ,&nbsp;Olivia C. Mayo ,&nbsp;Graham S. Martin ,&nbsp;Matthew P. Cross ,&nbsp;David K. Ludlow ,&nbsp;Katharine H. Fraser ,&nbsp;Jonathan P.L. Cox","doi":"10.1016/j.cbpa.2024.111711","DOIUrl":null,"url":null,"abstract":"<div><p>Odorant transport is of fundamental and applied importance. Using computational simulations, we studied odorant transport in an anatomically accurate model of the nasal passage of a hagfish (probably <em>Eptatretus stoutii</em>). We found that ambient water is sampled widely, with a significant ventral element. Additionally, there is a bilateral element to olfactory flow, which enters the single nostril in two narrow, laminar streams that are then split prior to the nasal chamber by the anterior edge of the central olfactory lamella. An appendage on this lamella directs a small portion (10–14%) of the overall nasal flow to the olfactory sensory channels. Much of the remaining flow is diverted away from the sensory channels by two peripheral channels. The anterior edge of the central olfactory lamella, together with a jet-impingement mechanism, disperses flow over the olfactory surfaces. Diffusion of odorant from bulk water to the olfactory surfaces is facilitated by the large surface area:volume ratio of the sensory channels, and by a resistance-based hydrodynamic mechanism that leads to long residence times (up to 4.5 s) in the sensory channels. With increasing volumetric flow rate, the rate of odorant transfer to the olfactory surfaces increases, but the efficiency of odorant uptake decreases, falling in the range 2–6%. Odorant flux decreases caudally across the olfactory surfaces, suggesting <em>in vivo</em> a preponderance of olfactory sensory neurons on the anterior part of each olfactory surface. We conclude that the hagfish has a subtle anatomy for locating and capturing odorant molecules.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1095643324001387/pdfft?md5=52a35d2ef35335ece11251bfb07e5ccc&pid=1-s2.0-S1095643324001387-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Odorant transport is of fundamental and applied importance. Using computational simulations, we studied odorant transport in an anatomically accurate model of the nasal passage of a hagfish (probably Eptatretus stoutii). We found that ambient water is sampled widely, with a significant ventral element. Additionally, there is a bilateral element to olfactory flow, which enters the single nostril in two narrow, laminar streams that are then split prior to the nasal chamber by the anterior edge of the central olfactory lamella. An appendage on this lamella directs a small portion (10–14%) of the overall nasal flow to the olfactory sensory channels. Much of the remaining flow is diverted away from the sensory channels by two peripheral channels. The anterior edge of the central olfactory lamella, together with a jet-impingement mechanism, disperses flow over the olfactory surfaces. Diffusion of odorant from bulk water to the olfactory surfaces is facilitated by the large surface area:volume ratio of the sensory channels, and by a resistance-based hydrodynamic mechanism that leads to long residence times (up to 4.5 s) in the sensory channels. With increasing volumetric flow rate, the rate of odorant transfer to the olfactory surfaces increases, but the efficiency of odorant uptake decreases, falling in the range 2–6%. Odorant flux decreases caudally across the olfactory surfaces, suggesting in vivo a preponderance of olfactory sensory neurons on the anterior part of each olfactory surface. We conclude that the hagfish has a subtle anatomy for locating and capturing odorant molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲶鱼体内的气味迁移
气味传输具有重要的基础和应用意义。通过计算模拟,我们在一个解剖学精确模型中研究了胡子鱼(可能是 Eptatretus stoutii)鼻腔的气味传输。我们发现,环境水的取样范围很广,其中有很大一部分是腹侧取样。此外,嗅流有双侧成分,以两股狭窄的层流进入单鼻孔,然后在进入鼻腔之前被中央嗅片的前缘分开。嗅片上的一个附属装置将鼻腔总气流的一小部分(10%-14%)引导至嗅觉通道。剩余的大部分水流通过两个外围通道从感觉通道分流出去。嗅觉中央薄片的前缘与喷射阻挡机制一起,将水流分散到嗅觉表面。由于感觉通道的表面积与体积之比很大,再加上基于阻力的流体力学机制导致感觉通道的停留时间较长(最长可达 4.5 秒),从而促进了气味从散装水扩散到嗅觉表面。随着容积流量的增加,气味转移到嗅觉表面的速率增加,但气味吸收效率降低,降幅在 2-6% 之间。气味通量在整个嗅觉表面的尾部减少,这表明体内嗅觉感觉神经元主要位于每个嗅觉表面的前部。我们的结论是,裸颊鰕虎鱼具有复杂的解剖结构,可以定位和捕捉气味分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1