{"title":"Identifying circRNA-disease association based on relational graph attention network and hypergraph attention network","authors":"PengLi Lu, Jinkai Wu, Wenqi Zhang","doi":"10.1016/j.ab.2024.115628","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, with the in-depth study of circRNA, scholars have begun to discover a synergistic relationship between circRNA and microorganisms. Traditional wet lab experiments in biology require expensive financial, material, and human resources to investigate the relationship between circRNA and diseases. Therefore, we propose a new predictive model for inferring the association between circRNA and diseases, called HAGACDA. Specifically, we first aggregate the unique features of circRNA and diseases themselves through singular value decomposition, Pearson similarity, and the biological information characteristics of circRNA and diseases. Utilizing the competitive relationships between miRNA and other microorganisms, we construct a circRNA-miRNA-disease multi-source heterogeneous network. Subsequently, we use a relational graph attention network to aggregate features based on the structural connections between different nodes. To address the inherent limitations in capturing high-order patterns in edge sets, we integrate a hypergraph attention network to extract features of circRNA and diseases. Finally, association prediction scores for node pairs are obtained through a multilayer perceptron. We conducted a comprehensive analysis of the model, including comparative experiments and case studies. Experimental results demonstrate that our model accurately predicts the association between circRNA and diseases.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"694 ","pages":"Article 115628"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001726","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the in-depth study of circRNA, scholars have begun to discover a synergistic relationship between circRNA and microorganisms. Traditional wet lab experiments in biology require expensive financial, material, and human resources to investigate the relationship between circRNA and diseases. Therefore, we propose a new predictive model for inferring the association between circRNA and diseases, called HAGACDA. Specifically, we first aggregate the unique features of circRNA and diseases themselves through singular value decomposition, Pearson similarity, and the biological information characteristics of circRNA and diseases. Utilizing the competitive relationships between miRNA and other microorganisms, we construct a circRNA-miRNA-disease multi-source heterogeneous network. Subsequently, we use a relational graph attention network to aggregate features based on the structural connections between different nodes. To address the inherent limitations in capturing high-order patterns in edge sets, we integrate a hypergraph attention network to extract features of circRNA and diseases. Finally, association prediction scores for node pairs are obtained through a multilayer perceptron. We conducted a comprehensive analysis of the model, including comparative experiments and case studies. Experimental results demonstrate that our model accurately predicts the association between circRNA and diseases.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.