Macro-Calcium Carbonate-Hydrogel Hybrid Spheroids: Design and Biomedical Applications.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-19 Epub Date: 2024-07-30 DOI:10.1021/acsabm.4c00372
Anatolii A Abalymov, Nooshin Asadi Heris, Andre G Skirtach, Bogdan V Parakhonskiy
{"title":"Macro-Calcium Carbonate-Hydrogel Hybrid Spheroids: Design and Biomedical Applications.","authors":"Anatolii A Abalymov, Nooshin Asadi Heris, Andre G Skirtach, Bogdan V Parakhonskiy","doi":"10.1021/acsabm.4c00372","DOIUrl":null,"url":null,"abstract":"<p><p>In advancing tissue engineering, we introduce a particle system combining the strength of calcium carbonate with the flexibility of hydrogels enhanced with alkaline phosphatase (ALP) for improved bone regeneration. Our innovation lies in creating large hybrid macrospheroids by bonding mineral nanostructured microparticles loaded with ALP through hydrogel polymerization. These composite macrospheroids address critical challenges in cell seeding, growth, and handling within three-dimensional (3D) environments. We conducted extensive characterization of these particles using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), mechanical property assessment, and fluorescence microscopy. The results demonstrate that the hybrid macrospheroids significantly enhance cell manipulation and growth in three-dimensional structures. Specifically, ALP-loaded macrospheroids showed a marked improvement in osteogenic activity, promoting effective bone tissue regeneration. This study not only showcases a unique approach to overcoming the limitations of traditional hydrogels in tissue engineering but also opens pathways for bone tissue regeneration. Our findings offer a promising tool for cell seeding and growth in 3D structures, potentially revolutionizing practices in tissue engineering and regenerative medicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c00372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In advancing tissue engineering, we introduce a particle system combining the strength of calcium carbonate with the flexibility of hydrogels enhanced with alkaline phosphatase (ALP) for improved bone regeneration. Our innovation lies in creating large hybrid macrospheroids by bonding mineral nanostructured microparticles loaded with ALP through hydrogel polymerization. These composite macrospheroids address critical challenges in cell seeding, growth, and handling within three-dimensional (3D) environments. We conducted extensive characterization of these particles using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), mechanical property assessment, and fluorescence microscopy. The results demonstrate that the hybrid macrospheroids significantly enhance cell manipulation and growth in three-dimensional structures. Specifically, ALP-loaded macrospheroids showed a marked improvement in osteogenic activity, promoting effective bone tissue regeneration. This study not only showcases a unique approach to overcoming the limitations of traditional hydrogels in tissue engineering but also opens pathways for bone tissue regeneration. Our findings offer a promising tool for cell seeding and growth in 3D structures, potentially revolutionizing practices in tissue engineering and regenerative medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巨型碳酸钙-水凝胶混合球体:设计与生物医学应用
在推进组织工程方面,我们引入了一种颗粒系统,该系统结合了碳酸钙的强度和碱性磷酸酶(ALP)增强的水凝胶的柔韧性,可改善骨再生。我们的创新之处在于通过水凝胶聚合将负载有 ALP 的矿物纳米结构微粒粘合在一起,从而创造出大型混合大球体。这些复合大球球解决了细胞在三维(3D)环境中播种、生长和处理的关键难题。我们使用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、机械性能评估和荧光显微镜对这些颗粒进行了广泛的表征。研究结果表明,混合大球能显著增强细胞在三维结构中的操作和生长。特别是,ALP负载的大球蛋白明显提高了成骨活性,促进了骨组织的有效再生。这项研究不仅展示了一种独特的方法来克服组织工程中传统水凝胶的局限性,还为骨组织再生开辟了道路。我们的研究结果为细胞在三维结构中播种和生长提供了一种前景广阔的工具,有可能彻底改变组织工程和再生医学的实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
Preparation and Antibacterial Properties of Polyelectrolyte Complexed Nanoparticles Aggregated from PHMG and Sodium Caffeate. Doxorubicin-Loaded Ultrasmall Gold Nanoparticles (1.5 nm) for Brain Tumor Therapy and Assessment of Their Biodistribution. Development and Use of Human Recombinant 64Cu-rHCF as a Kidney Glomerulus-Targeted Contrast Agent for Positron Emission Tomography. Copper and Manganese Complexes of Pyridinecarboxaldimine Induce Oxidative Cell Death in Cancer Cells. Manipulating Charge Distribution of Graphitic Carbon Nitride for Boosting NIR-II Light-Activated Reactive Oxygen Species Generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1