Sulfur-Doped Bi2O2CO3 Nanosheet for Enhanced Visible-Light-Driven Photocatalytic CO2 Reduction to CO with Ultra-High Selectivity

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-07-30 DOI:10.1002/cssc.202401054
Chengxin Zhu, Qiong Liu, Huan Yan, Wei Zhang, Rong Chen
{"title":"Sulfur-Doped Bi2O2CO3 Nanosheet for Enhanced Visible-Light-Driven Photocatalytic CO2 Reduction to CO with Ultra-High Selectivity","authors":"Chengxin Zhu,&nbsp;Qiong Liu,&nbsp;Huan Yan,&nbsp;Wei Zhang,&nbsp;Rong Chen","doi":"10.1002/cssc.202401054","DOIUrl":null,"url":null,"abstract":"<p>The photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) has emerged as a compelling strategy for the conversion of renewable energy. However, the expeditious recombination of photogenerated charge carriers and the inadequate light absorption capabilities are currently predominant challenges. Herein, we developed a facile hydrothermal approach to synthesize a sulfur doped Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> nanosheet with a tunable energy band structure designed to enhance visible light absorption. Our findings indicate that the incorporation of sulfur into the catalytic sites induces an electron sink effect, significantly improving the separation efficiency of photogenerated charge carriers. Consequently, this sulfur-doped Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> catalyst exhibits a remarkable carbon monoxide (CO) yield of 16.64 μmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> with nearly 100 % selectivity under illumination ranging from 420 to 780 nm. Through in-situ characterization techniques and theoretical calculations, it was revealed that sulfur-coordinated bismuth sites greatly enhance CO<sub>2</sub> adsorption and decrease the energy barrier for critical intermediates formation (*COOH), thus selectively driving the reaction towards CO production. This work not only advances our understanding of mechanisms underlying photocatalytic reduction of CO<sub>2</sub> on sulfur-doped bismuth-based catalysts but also sets a precedent for developing sophisticated photocatalytic systems for enhanced photoreduction reactions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401054","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic reduction of carbon dioxide (CO2) has emerged as a compelling strategy for the conversion of renewable energy. However, the expeditious recombination of photogenerated charge carriers and the inadequate light absorption capabilities are currently predominant challenges. Herein, we developed a facile hydrothermal approach to synthesize a sulfur doped Bi2O2CO3 nanosheet with a tunable energy band structure designed to enhance visible light absorption. Our findings indicate that the incorporation of sulfur into the catalytic sites induces an electron sink effect, significantly improving the separation efficiency of photogenerated charge carriers. Consequently, this sulfur-doped Bi2O2CO3 catalyst exhibits a remarkable carbon monoxide (CO) yield of 16.64 μmol gcat−1 h−1 with nearly 100 % selectivity under illumination ranging from 420 to 780 nm. Through in-situ characterization techniques and theoretical calculations, it was revealed that sulfur-coordinated bismuth sites greatly enhance CO2 adsorption and decrease the energy barrier for critical intermediates formation (*COOH), thus selectively driving the reaction towards CO production. This work not only advances our understanding of mechanisms underlying photocatalytic reduction of CO2 on sulfur-doped bismuth-based catalysts but also sets a precedent for developing sophisticated photocatalytic systems for enhanced photoreduction reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺硫 Bi2O2CO3 纳米片用于增强可见光驱动的光催化二氧化碳还原为具有超高选择性的一氧化碳。
光催化还原二氧化碳(CO2)已成为一种引人注目的可再生能源转换策略。然而,光生电荷载流子的快速重组和光吸收能力不足是目前面临的主要挑战。在此,我们开发了一种简便的水热法来合成掺硫 Bi2O2CO3 纳米片,该纳米片具有可调能带结构,旨在增强对可见光的吸收。我们的研究结果表明,在催化位点中加入硫会产生电子汇效应,从而显著提高光生电荷载流子的分离效率。因此,这种掺硫的 Bi2O2CO3 催化剂在 420 至 780 纳米的光照下,一氧化碳(CO)产率达到 16.64 μmol gcat-1 h-1,选择性接近 100%。通过原位表征技术和理论计算发现,硫配位的铋位点极大地增强了对 CO2 的吸附,并降低了临界中间产物(*COOH)形成的能量障碍,从而选择性地推动了 CO 生成反应。这项工作不仅加深了我们对掺硫铋基催化剂光催化还原 CO2 的机理的理解,还为开发用于增强光还原反应的复杂光催化系统开创了先河。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Access to Highly Functional and Polymerizable Carbonate-Drug Conjugates. Exploring the Potential of H-zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and their Flexible Films. Scope and Limitations of the Use of Methanesulfonic Acid (MSA) as a Green Acid for Global Deprotection in Solid-Phase Peptide Synthesis. The Roles of Hydroxyl Radicals and Superoxide in Oxidizing Aqueous Benzyl Alcohol under Ultrasound Irradiation. Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1