Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-02-05 DOI:10.1002/cssc.202402583
Christian Robles, Laura Montañés, Camilo A Mesa, Diego Iglesias, Helena Rabelo, Maria Chiara Spadaro, Jordi Arbiol, Jesús Redondo, Frederik Schiller, Sara Barja, Beatriz Julián-López, Ana Gutiérrez-Blanco, Sixto Gimenez, Víctor Sans
{"title":"Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.","authors":"Christian Robles, Laura Montañés, Camilo A Mesa, Diego Iglesias, Helena Rabelo, Maria Chiara Spadaro, Jordi Arbiol, Jesús Redondo, Frederik Schiller, Sara Barja, Beatriz Julián-López, Ana Gutiérrez-Blanco, Sixto Gimenez, Víctor Sans","doi":"10.1002/cssc.202402583","DOIUrl":null,"url":null,"abstract":"<p><p>Cost-effective and efficient photoelectrochemical (PEC) water splitting stands out as one of the most promising strategies to address sustainable energy supply in the form of green H2. Large-area photoelectrodes featuring precise chemical and morphological control are key components for a practical solar-to-hydrogen conversion. Herein, we report the continuous flow synthesis of BiVO4 nanoparticles (NPs) by using a simple microreactor configuration. The solution containing the as-prepared NPs enables the deposition of BiVO4 photoanodes with areas up to 52 cm2 through a simple and scalable chemical bath deposition method. On the other hand, surface protection by an ultrathin Al2O3 overlayer grown by atomic layer deposition (ALD) increases the performance of the 1 cm2 BiVO4 photoanodes ~ 30%, exhibiting a photocurrent density of ~2.0 mA·cm-2 at 1.23 V vs. the Reversible Hydrogen Electrode in the presence of a sacrificial hole scavenger. The optimized continuous flow synthesis provides an affordable methodology for the fabrication of cost-effective, large-scale photoanodes, which could potentially be applied for different photoelectrochemical reactions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402583"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cost-effective and efficient photoelectrochemical (PEC) water splitting stands out as one of the most promising strategies to address sustainable energy supply in the form of green H2. Large-area photoelectrodes featuring precise chemical and morphological control are key components for a practical solar-to-hydrogen conversion. Herein, we report the continuous flow synthesis of BiVO4 nanoparticles (NPs) by using a simple microreactor configuration. The solution containing the as-prepared NPs enables the deposition of BiVO4 photoanodes with areas up to 52 cm2 through a simple and scalable chemical bath deposition method. On the other hand, surface protection by an ultrathin Al2O3 overlayer grown by atomic layer deposition (ALD) increases the performance of the 1 cm2 BiVO4 photoanodes ~ 30%, exhibiting a photocurrent density of ~2.0 mA·cm-2 at 1.23 V vs. the Reversible Hydrogen Electrode in the presence of a sacrificial hole scavenger. The optimized continuous flow synthesis provides an affordable methodology for the fabrication of cost-effective, large-scale photoanodes, which could potentially be applied for different photoelectrochemical reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有成本效益的高效光电化学(PEC)水分离技术是解决绿色 H2 形式可持续能源供应的最有前途的战略之一。具有精确化学和形态控制特性的大面积光电电极是实现太阳能制氢转换的关键部件。在此,我们报告了利用简单的微反应器配置连续流合成 BiVO4 纳米粒子(NPs)的方法。含有制备的 NPs 的溶液可通过简单、可扩展的化学沉积法沉积面积达 52 cm2 的 BiVO4 光阳极。另一方面,通过原子层沉积 (ALD) 生长的超薄 Al2O3 覆盖层对表面进行保护,可将 1 cm2 BiVO4 光阳极的性能提高约 30%,在牺牲空穴清除剂存在的情况下,与可逆氢电极相比,1.23 V 电压下的光电流密度约为 2.0 mA-cm-2。优化的连续流合成为制造具有成本效益的大规模光阳极提供了一种经济实惠的方法,有可能应用于不同的光电化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Access to Highly Functional and Polymerizable Carbonate-Drug Conjugates. Exploring the Potential of H-zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and their Flexible Films. Scope and Limitations of the Use of Methanesulfonic Acid (MSA) as a Green Acid for Global Deprotection in Solid-Phase Peptide Synthesis. The Roles of Hydroxyl Radicals and Superoxide in Oxidizing Aqueous Benzyl Alcohol under Ultrasound Irradiation. Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1