{"title":"Tri-Anion Solvation Structure Electrolyte Improves the Electrochemical Performance of Li||LiNi0.8Co0.1Mn0.1O2 Batteries","authors":"Miaolan Sun, Yuxiang Xie, Huayu Huang, Yixin Huang, Hui Chen, Shishi Liu, Peng Dai, Rui Huang, Ling Huang, Shigang Sun","doi":"10.1002/cssc.202401029","DOIUrl":null,"url":null,"abstract":"<p>Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> batteries, which consist of lithium metal anode (LMA) matched with NCM811 cathode, have an energy density more than twice that of lithium ion battery (LIB). However, the unstable electrode/electrolyte interface still hinders its practical application. Ether electrolytes show promise in improving the stability of LMA and NCM811 cathodes. However, a robust and stable electrode/electrolyte interface in Li||NCM811 batteries cannot be easily and efficiently achieved with most of the ether electrolytes reported in present studies. Herein, we present a straightforward and efficient tri-anion synergistic strategy to overcome this bottleneck. The addition of ClO<sub>4</sub><sup>−</sup> and NO<sub>3</sub><sup>−</sup> anions to LiFSI-based ether electrolytes forms a unique solvation structure with tri-anion (FSI<sup>−</sup>/ClO<sub>4</sub><sup>−</sup>/NO<sub>3</sub><sup>−</sup>) participation (LB511). This structure not only enhances the electrochemical window of the ether electrolytes but also achieves a stable Li||NCM811 batteries interface. The interaction between electrode and electrolyte is suppressed and an inorganic-rich (LiF/Li<sub>3</sub>N/LiCl) SEI/CEI layer is formed. Meanwhile, the coordination structure in the LB511 electrolyte increases the overpotential for Li deposition, resulting in a uniform and dense layer of Li deposition. Therefore, the Li||Cu cells using the LB511 electrolyte have an average CE of 99.6 %. The Li||NCM811 batteries was cycled stably for 250 cycles with a capacity retention of 81 % in the LB511 electrolyte (N/P=2.5, 0.5 C).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401029","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Li||LiNi0.8Co0.1Mn0.1O2 batteries, which consist of lithium metal anode (LMA) matched with NCM811 cathode, have an energy density more than twice that of lithium ion battery (LIB). However, the unstable electrode/electrolyte interface still hinders its practical application. Ether electrolytes show promise in improving the stability of LMA and NCM811 cathodes. However, a robust and stable electrode/electrolyte interface in Li||NCM811 batteries cannot be easily and efficiently achieved with most of the ether electrolytes reported in present studies. Herein, we present a straightforward and efficient tri-anion synergistic strategy to overcome this bottleneck. The addition of ClO4− and NO3− anions to LiFSI-based ether electrolytes forms a unique solvation structure with tri-anion (FSI−/ClO4−/NO3−) participation (LB511). This structure not only enhances the electrochemical window of the ether electrolytes but also achieves a stable Li||NCM811 batteries interface. The interaction between electrode and electrolyte is suppressed and an inorganic-rich (LiF/Li3N/LiCl) SEI/CEI layer is formed. Meanwhile, the coordination structure in the LB511 electrolyte increases the overpotential for Li deposition, resulting in a uniform and dense layer of Li deposition. Therefore, the Li||Cu cells using the LB511 electrolyte have an average CE of 99.6 %. The Li||NCM811 batteries was cycled stably for 250 cycles with a capacity retention of 81 % in the LB511 electrolyte (N/P=2.5, 0.5 C).
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology