Deep Learning-Based Techniques in Glioma Brain Tumor Segmentation Using Multi-Parametric MRI: A Review on Clinical Applications and Future Outlooks.

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Magnetic Resonance Imaging Pub Date : 2024-07-29 DOI:10.1002/jmri.29543
Delaram J Ghadimi, Amir M Vahdani, Hanie Karimi, Pouya Ebrahimi, Mobina Fathi, Farzan Moodi, Adrina Habibzadeh, Fereshteh Khodadadi Shoushtari, Gelareh Valizadeh, Hanieh Mobarak Salari, Hamidreza Saligheh Rad
{"title":"Deep Learning-Based Techniques in Glioma Brain Tumor Segmentation Using Multi-Parametric MRI: A Review on Clinical Applications and Future Outlooks.","authors":"Delaram J Ghadimi, Amir M Vahdani, Hanie Karimi, Pouya Ebrahimi, Mobina Fathi, Farzan Moodi, Adrina Habibzadeh, Fereshteh Khodadadi Shoushtari, Gelareh Valizadeh, Hanieh Mobarak Salari, Hamidreza Saligheh Rad","doi":"10.1002/jmri.29543","DOIUrl":null,"url":null,"abstract":"<p><p>This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29543","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的多参数磁共振成像胶质瘤脑肿瘤分割技术:临床应用综述与未来展望》。
这篇综述探讨了深度学习(DL)在使用多参数磁共振成像(MRI)数据进行胶质瘤分割中的作用。研究调查了多参数磁共振成像等先进技术,以捕捉神经胶质瘤的复杂性质。研究深入探讨了 DL 与 MRI 的整合,重点关注卷积神经网络 (CNN) 及其在肿瘤分割方面的卓越能力。重点介绍了基于 DL 的分割的临床应用,包括治疗计划、治疗反应监测以及区分肿瘤进展和假性进展。此外,综述还探讨了基于 DL 的分割研究的演变,从早期的 CNN 模型到最近的进步,如注意力机制和变换器模型。文中还讨论了数据质量、梯度消失和模型可解释性方面的挑战。综述最后提出了对未来研究方向的见解,强调了解决肿瘤异质性、整合基因组数据以及确保负责任地部署 DL 驱动的医疗保健技术的重要性。证据等级:不适用 技术效率:第 2 阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
期刊最新文献
Editorial for "Longitudinal Evolution of the Brain Microstructure in Cirrhotic Patients on Diffusion Kurtosis Imaging". Longitudinal Evolution of the Brain Microstructure in Cirrhotic Patients on Diffusion Kurtosis Imaging. Critical Omissions Compromise Internal Validity in Jugular Vein Compression Collar Studies. Editorial for "Improving Accuracy and Reproducibility of Cartilage T2 Mapping in the OAI Dataset Through Extended Phase Graph Modeling". Editorial for "3D Vortex-Energetics in the Left Pulmonary Artery for Differentiating Pulmonary Arterial Hypertension and Pulmonary Venous Hypertension Groups Using 4D Flow MRI".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1