{"title":"Network motifs exhibiting a differential response to spaced and massed inputs.","authors":"Ashley Sreejan, Priyanka Saxena, Chetan J Gadgil","doi":"10.1101/lm.054012.124","DOIUrl":null,"url":null,"abstract":"<p><p>One characteristic of long-term memory is the existence of an inverted U-shaped response to increasing intervals between training sessions, and consequently, an optimal spacing that maximizes memory formation. Current models of this spacing effect focus on specific molecular components and their interactions. Here, we computationally study the underlying network architecture, in particular, the potential of motif dynamics in qualitatively capturing the spacing effect in a manner that is independent of the animal model, biomolecular components, and the timescales involved. We define a common training and test protocol, and computationally identify network topologies that can qualitatively replicate the experimentally observed characteristics of the spacing effect. For 41 motifs derived from fundamental network architectures such as autoregulation, feedback, and feedforward motifs, we tested their capacity to manifest the spacing effect in terms of an inverted U-shaped response curve, using different combinations of stimulation protocols, response metrics, and kinetic parameters. Our findings indicate that positive feedback motifs where the stimulus enhances conversion reaction in the loop replicate the spacing effect across all response metrics, while feedforward motifs exhibit a metric-specific spacing effect. For some parameter combinations, linear cascades of activation and conversion reactions were found sufficient to qualitatively exhibit spacing effect characteristics.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"31 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.054012.124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
One characteristic of long-term memory is the existence of an inverted U-shaped response to increasing intervals between training sessions, and consequently, an optimal spacing that maximizes memory formation. Current models of this spacing effect focus on specific molecular components and their interactions. Here, we computationally study the underlying network architecture, in particular, the potential of motif dynamics in qualitatively capturing the spacing effect in a manner that is independent of the animal model, biomolecular components, and the timescales involved. We define a common training and test protocol, and computationally identify network topologies that can qualitatively replicate the experimentally observed characteristics of the spacing effect. For 41 motifs derived from fundamental network architectures such as autoregulation, feedback, and feedforward motifs, we tested their capacity to manifest the spacing effect in terms of an inverted U-shaped response curve, using different combinations of stimulation protocols, response metrics, and kinetic parameters. Our findings indicate that positive feedback motifs where the stimulus enhances conversion reaction in the loop replicate the spacing effect across all response metrics, while feedforward motifs exhibit a metric-specific spacing effect. For some parameter combinations, linear cascades of activation and conversion reactions were found sufficient to qualitatively exhibit spacing effect characteristics.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.