Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI.

Lei Zhou, Yuzhong Zhang, Jiadong Zhang, Xuejun Qian, Chen Gong, Kun Sun, Zhongxiang Ding, Xing Wang, Zhenhui Li, Zaiyi Liu, Dinggang Shen
{"title":"Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI.","authors":"Lei Zhou, Yuzhong Zhang, Jiadong Zhang, Xuejun Qian, Chen Gong, Kun Sun, Zhongxiang Ding, Xing Wang, Zhenhui Li, Zaiyi Liu, Dinggang Shen","doi":"10.1109/TMI.2024.3435450","DOIUrl":null,"url":null,"abstract":"<p><p>Automated breast tumor segmentation on the basis of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) has shown great promise in clinical practice, particularly for identifying the presence of breast disease. However, accurate segmentation of breast tumor is a challenging task, often necessitating the development of complex networks. To strike an optimal tradeoff between computational costs and segmentation performance, we propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers. Specifically, the hybrid network consists of a encoder-decoder architecture by stacking convolution and deconvolution layers. Effective 3D transformer layers are then implemented after the encoder subnetworks, to capture global dependencies between the bottleneck features. To improve the efficiency of hybrid network, two parallel encoder sub-networks are designed for the decoder and the transformer layers, respectively. To further enhance the discriminative capability of hybrid network, a prototype learning guided prediction module is proposed, where the category-specified prototypical features are calculated through online clustering. All learned prototypical features are finally combined with the features from decoder for tumor mask prediction. The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network achieves superior performance than the state-of-the-art (SOTA) methods, while maintaining balance between segmentation accuracy and computation cost. Moreover, we demonstrate that automatically generated tumor masks can be effectively applied to identify HER2-positive subtype from HER2-negative subtype with the similar accuracy to the analysis based on manual tumor segmentation. The source code is available at https://github.com/ZhouL-lab/ PLHN.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3435450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated breast tumor segmentation on the basis of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) has shown great promise in clinical practice, particularly for identifying the presence of breast disease. However, accurate segmentation of breast tumor is a challenging task, often necessitating the development of complex networks. To strike an optimal tradeoff between computational costs and segmentation performance, we propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers. Specifically, the hybrid network consists of a encoder-decoder architecture by stacking convolution and deconvolution layers. Effective 3D transformer layers are then implemented after the encoder subnetworks, to capture global dependencies between the bottleneck features. To improve the efficiency of hybrid network, two parallel encoder sub-networks are designed for the decoder and the transformer layers, respectively. To further enhance the discriminative capability of hybrid network, a prototype learning guided prediction module is proposed, where the category-specified prototypical features are calculated through online clustering. All learned prototypical features are finally combined with the features from decoder for tumor mask prediction. The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network achieves superior performance than the state-of-the-art (SOTA) methods, while maintaining balance between segmentation accuracy and computation cost. Moreover, we demonstrate that automatically generated tumor masks can be effectively applied to identify HER2-positive subtype from HER2-negative subtype with the similar accuracy to the analysis based on manual tumor segmentation. The source code is available at https://github.com/ZhouL-lab/ PLHN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 DCE-MRI 中乳腺肿瘤分割的原型学习引导混合网络。
基于动态对比增强磁共振成像(DCE-MRI)的乳腺肿瘤自动分割技术在临床实践中大有可为,尤其是在识别乳腺疾病方面。然而,准确分割乳腺肿瘤是一项具有挑战性的任务,往往需要开发复杂的网络。为了在计算成本和分割性能之间取得最佳平衡,我们提出了一种结合卷积神经网络(CNN)和变压器层的混合网络。具体来说,该混合网络通过堆叠卷积层和解卷层组成了一个编码器-解码器架构。然后在编码器子网络之后实施有效的三维变换层,以捕捉瓶颈特征之间的全局依赖关系。为了提高混合网络的效率,还分别为解码器层和变换层设计了两个并行的编码器子网络。为进一步提高混合网络的分辨能力,提出了原型学习引导预测模块,通过在线聚类计算类别指定的原型特征。所有学习到的原型特征最终与来自解码器的特征相结合,用于肿瘤掩膜预测。在私人和公共 DCE-MRI 数据集上的实验结果表明,所提出的混合网络比最先进的(SOTA)方法性能更优越,同时保持了分割精度和计算成本之间的平衡。此外,我们还证明了自动生成的肿瘤掩膜可以有效地从 HER2 阴性亚型中识别出 HER2 阳性亚型,其准确性与基于人工肿瘤分割的分析相似。源代码见 https://github.com/ZhouL-lab/ PLHN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism. Table of Contents LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1