Philip Muller, Felix Meissen, Georgios Kaissis, Daniel Rueckert
{"title":"Weakly Supervised Object Detection in Chest X-Rays with Differentiable ROI Proposal Networks and Soft ROI Pooling.","authors":"Philip Muller, Felix Meissen, Georgios Kaissis, Daniel Rueckert","doi":"10.1109/TMI.2024.3435015","DOIUrl":null,"url":null,"abstract":"<p><p>Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in this task for natural images, however, do not translate well to medical images due to the very different characteristics of their objects (i.e. pathologies). In this work, we propose Weakly Supervised ROI Proposal Networks (WSRPN), a new method for generating bounding box proposals on the fly using a specialized region of interest-attention (ROI-attention) module. WSRPN integrates well with classic backbone-head classification algorithms and is end-to-end trainable with only image-label supervision. We experimentally demonstrate that our new method outperforms existing methods in the challenging task of disease localization in chest X-ray images. Code: https://anonymous.4open.science/r/WSRPN-DCA1.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3435015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in this task for natural images, however, do not translate well to medical images due to the very different characteristics of their objects (i.e. pathologies). In this work, we propose Weakly Supervised ROI Proposal Networks (WSRPN), a new method for generating bounding box proposals on the fly using a specialized region of interest-attention (ROI-attention) module. WSRPN integrates well with classic backbone-head classification algorithms and is end-to-end trainable with only image-label supervision. We experimentally demonstrate that our new method outperforms existing methods in the challenging task of disease localization in chest X-ray images. Code: https://anonymous.4open.science/r/WSRPN-DCA1.
弱监督对象检测(WSup-OD)无需额外监督即可提高图像分类算法的实用性和可解释性。然而,由于对象(即病理)的特征截然不同,多实例学习在自然图像任务中取得的成功并不能很好地应用于医学图像。在这项工作中,我们提出了弱监督 ROI 建议网络(WSRPN),这是一种利用专门的兴趣区域关注(ROI-attention)模块即时生成边界框建议的新方法。WSRPN 与经典的骨干头分类算法集成良好,只需图像标签监督即可进行端到端的训练。我们通过实验证明,在胸部 X 光图像疾病定位这一具有挑战性的任务中,我们的新方法优于现有方法。代码:https://anonymous.4open.science/r/WSRPN-DCA1。