Synergistic effects of exogenous IAA and melatonin on seed priming and physiological biochemistry of three desert plants in saline-alkali soil.

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-07-29 DOI:10.1080/15592324.2024.2379695
Youwei Zhang, Lei Wang, Xuebo Li, Hao Wen, Xiao Yu, Yixuan Wang
{"title":"Synergistic effects of exogenous IAA and melatonin on seed priming and physiological biochemistry of three desert plants in saline-alkali soil.","authors":"Youwei Zhang, Lei Wang, Xuebo Li, Hao Wen, Xiao Yu, Yixuan Wang","doi":"10.1080/15592324.2024.2379695","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, <i>Sarcozygium xanthoxylon</i>, <i>Nitraria tangutorum</i>, and <i>Ammopiptanthus mongolicus</i>, which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 μmol/L) and exogenous melatonin concentration (0, 100, 200, 300 μmol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin. The results indicate that under different concentrations of exogenous IAA and melatonin, the germination rate and vigor of the three desert plant species in saline-alkaline soil improved. However, as the concentration of melatonin increased, the germination rate and vigor of these desert plants were inhibited. Whereas, plant height, root length, leaf length, fresh weight, dry weight, and root vigor of the three desert plants were alleviated under different conditions of exogenous IAA and exogenous melatonin. under the action of two exogenous hormones, the low concentration of melatonin decreased their malondialdehyde content and increased their proline content. As melatonin levels increased, the activity of antioxidant enzymes also rose initially, followed by a subsequent decline. This study highlights the synergistic effects of two exogenous hormones on the critical role of cell osmomodulators and antioxidant enzyme activity in combating salinity damage in three desert plants.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2379695"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2379695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, Sarcozygium xanthoxylon, Nitraria tangutorum, and Ammopiptanthus mongolicus, which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 μmol/L) and exogenous melatonin concentration (0, 100, 200, 300 μmol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin. The results indicate that under different concentrations of exogenous IAA and melatonin, the germination rate and vigor of the three desert plant species in saline-alkaline soil improved. However, as the concentration of melatonin increased, the germination rate and vigor of these desert plants were inhibited. Whereas, plant height, root length, leaf length, fresh weight, dry weight, and root vigor of the three desert plants were alleviated under different conditions of exogenous IAA and exogenous melatonin. under the action of two exogenous hormones, the low concentration of melatonin decreased their malondialdehyde content and increased their proline content. As melatonin levels increased, the activity of antioxidant enzymes also rose initially, followed by a subsequent decline. This study highlights the synergistic effects of two exogenous hormones on the critical role of cell osmomodulators and antioxidant enzyme activity in combating salinity damage in three desert plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外源IAA和褪黑激素对盐碱地中三种沙漠植物种子萌发和生理生化的协同效应
为了研究IAA和褪黑激素(MT)对三种植物减轻盐害影响的协同作用,我们旨在确定提高各物种抗盐碱能力的最佳外源激素处理浓度。本实验以乌海市常见的三种沙漠植物 Sarcozygium xanthoxylon、Nitraria tangutorum 和 Ammopiptanthus mongolicus 为植物材料。采用外源激素IAA(100 μmol/L)和外源褪黑激素(0、100、200、300 μmol/L)两种浓度(12 h、24 h),在不同的外源IAA和外源褪黑激素条件下处理盐碱地中的三种荒漠植物。结果表明,在不同浓度的外源 IAA 和褪黑激素条件下,三种荒漠植物在盐碱土中的发芽率和活力均有所提高。然而,随着褪黑激素浓度的增加,这些沙漠植物的发芽率和活力受到抑制。而在外源 IAA 和外源褪黑激素的不同条件下,这三种沙漠植物的株高、根长、叶长、鲜重、干重和根系活力都得到了缓解。随着褪黑激素水平的提高,抗氧化酶的活性最初也有所上升,但随后有所下降。这项研究强调了两种外源激素对细胞渗透调节剂和抗氧化酶活性的协同作用,这两种激素在三种沙漠植物抗盐碱损害中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1