Unitary control of partially coherent waves. I. Absorption

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-07-29 DOI:10.1103/physrevb.110.035430
Cheng Guo, Shanhui Fan
{"title":"Unitary control of partially coherent waves. I. Absorption","authors":"Cheng Guo, Shanhui Fan","doi":"10.1103/physrevb.110.035430","DOIUrl":null,"url":null,"abstract":"The coherent control of wave absorption has important applications in areas such as energy harvesting, imaging, and sensing. However, most practical scenarios involve the absorption of partially coherent rather than fully coherent waves. Here we present a systematic theory of unitary control over the absorption of partially coherent waves by linear systems. Given an absorbing system and incident partially coherent wave, we provide analytical expressions for the range of attainable absorptivity under arbitrary unitary transformations of the incident field. We also present an explicit algorithm to construct the unitary control scheme that achieves any desired absorptivity within that attainable range. As applications of our theory, we derive the conditions required for achieving two phenomena—partially coherent perfect absorption and partially coherent zero absorption. Furthermore, we prove a theorem relating the coherence properties of the incident field, as quantified by majorization, to the resulting absorption intervals. Our results provide both fundamental insights and practical prescriptions for exploiting unitary control to shape the absorption of partially coherent waves. The theory applies across the electromagnetic spectrum as well as to other classical wave systems such as acoustic waves.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.035430","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The coherent control of wave absorption has important applications in areas such as energy harvesting, imaging, and sensing. However, most practical scenarios involve the absorption of partially coherent rather than fully coherent waves. Here we present a systematic theory of unitary control over the absorption of partially coherent waves by linear systems. Given an absorbing system and incident partially coherent wave, we provide analytical expressions for the range of attainable absorptivity under arbitrary unitary transformations of the incident field. We also present an explicit algorithm to construct the unitary control scheme that achieves any desired absorptivity within that attainable range. As applications of our theory, we derive the conditions required for achieving two phenomena—partially coherent perfect absorption and partially coherent zero absorption. Furthermore, we prove a theorem relating the coherence properties of the incident field, as quantified by majorization, to the resulting absorption intervals. Our results provide both fundamental insights and practical prescriptions for exploiting unitary control to shape the absorption of partially coherent waves. The theory applies across the electromagnetic spectrum as well as to other classical wave systems such as acoustic waves.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分相干波的单元控制。I. 吸收
相干波吸收控制在能量收集、成像和传感等领域有着重要的应用。然而,大多数实际应用场景涉及部分相干波而非完全相干波的吸收。在此,我们提出了线性系统吸收部分相干波的单元控制的系统理论。给定一个吸收系统和入射的部分相干波,我们提供了入射场任意单元变换下可达到的吸收率范围的解析表达式。我们还提出了一种明确的算法,用于构建单元控制方案,从而在可达到的范围内实现任何所需的吸收率。作为我们理论的应用,我们推导出了实现部分相干完全吸收和部分相干零吸收这两种现象所需的条件。此外,我们还证明了入射场的相干特性(通过大化量化)与所产生的吸收区间之间的相关定理。我们的结果为利用单元控制来塑造部分相干波的吸收提供了基本见解和实用方法。该理论适用于整个电磁频谱以及声波等其他经典波系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Disordered Landau levels of single-cone massless Dirac fermions with broken particle-hole symmetry Locality, correlations, information, and non-Hermitian quantum systems Insights into the bonding properties and magnetism of the Mn-B system with a physically constrained neural network functional Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O(N)* and Ising* continuous transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1