{"title":"Self-training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation","authors":"Pang-jo Chun, Toshiya Kikuta","doi":"10.1111/mice.13315","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a novel self-training framework for unsupervised domain adaptation in the segmentation of concrete wall cracks using accumulated crack data. The proposed method incorporates Bayesian neural networks for uncertainty estimation of pseudo-labels, and spatial priors of cracks for screening noisy labels. Experiments demonstrate that the proposed approach achieves significant improvements in F1 score. Comparing the F1 scores, Bayesian DeepLabv3+ and Bayesian U-Net showed performance improvements of 0.0588 and 0.1501, respectively, after domain adaptation. Furthermore, the integration of Stable Diffusion for few-shot image generation enhances domain adaptation performance by 0.0332. The proposed framework enables high-precision crack segmentation with as few as 100 target images, which can be easily obtained at the site, reducing the cost of model deployment in infrastructure maintenance. The study also investigates the optimal number of iterations for domain adaptation based on the uncertainty score, providing insights for practical implementation. The proposed method contributes to the development of efficient and automated structural health monitoring using AI.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 17","pages":"2642-2661"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13315","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel self-training framework for unsupervised domain adaptation in the segmentation of concrete wall cracks using accumulated crack data. The proposed method incorporates Bayesian neural networks for uncertainty estimation of pseudo-labels, and spatial priors of cracks for screening noisy labels. Experiments demonstrate that the proposed approach achieves significant improvements in F1 score. Comparing the F1 scores, Bayesian DeepLabv3+ and Bayesian U-Net showed performance improvements of 0.0588 and 0.1501, respectively, after domain adaptation. Furthermore, the integration of Stable Diffusion for few-shot image generation enhances domain adaptation performance by 0.0332. The proposed framework enables high-precision crack segmentation with as few as 100 target images, which can be easily obtained at the site, reducing the cost of model deployment in infrastructure maintenance. The study also investigates the optimal number of iterations for domain adaptation based on the uncertainty score, providing insights for practical implementation. The proposed method contributes to the development of efficient and automated structural health monitoring using AI.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.