2D C-Axis-Aligned Crystalline In─S─O Transistors Processed from Aqueous Solution

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-07-28 DOI:10.1002/aelm.202400473
Wangying Xu, Jierui Lin, Yanwei Li, Chuyu Xu, Shuqiong Lan, Yu Zhang, Deliang Zhu
{"title":"2D C-Axis-Aligned Crystalline In─S─O Transistors Processed from Aqueous Solution","authors":"Wangying Xu,&nbsp;Jierui Lin,&nbsp;Yanwei Li,&nbsp;Chuyu Xu,&nbsp;Shuqiong Lan,&nbsp;Yu Zhang,&nbsp;Deliang Zhu","doi":"10.1002/aelm.202400473","DOIUrl":null,"url":null,"abstract":"<p>There is a growing interest in exploring nanometer-thin 2D oxide semiconductor transistors for future scaled and multifunctional (e.g., ultraflexible and high transparency) devices. However, further development is hindered due to the degraded device performance with nanometer-thin 2D oxide semiconductor channels and the use of costly vacuum-based techniques. Here, 2D (2.7 nm thick) c-axis-aligned crystalline In─S─O channel material processed from aqueous solution is reported. The 2D In─S─O transistors based on Si/SiO<sub>2</sub> substrates exhibit high mobility (<i>µ</i>) of 22.15 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, on/off current ratio (<i>I</i><sub>on</sub>/<i>I</i><sub>off</sub>) of ≈10<sup>7</sup>, and good bias stress stability. Detailed investigations show that this achievement is attributed to the highly c-axis-aligned crystalline structure, well-designed In─S─O channel material, and atomically smooth surface. Furthermore, the 2D In─S─O channel is integrated with an aqueous sol-gel-derived 6 nm thick high-<i>k</i> ZrO<sub>2</sub> insulator. The all-aqueous-solution-based quasi-2D In─S─O/ZrO<sub>2</sub> devices show high <i>µ</i> of 15.65 cm<sup>2</sup> V<sup>─1</sup> s<sup>─1</sup>, <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> of ≈10<sup>6</sup>, and low operating voltage of 1.5 V. This 2D c-axis-aligned crystalline wide-bandgap oxide semiconductor channel material opens tremendous opportunities for multifunctional, ultra-scaled and low-cost electronics.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400473","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400473","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing interest in exploring nanometer-thin 2D oxide semiconductor transistors for future scaled and multifunctional (e.g., ultraflexible and high transparency) devices. However, further development is hindered due to the degraded device performance with nanometer-thin 2D oxide semiconductor channels and the use of costly vacuum-based techniques. Here, 2D (2.7 nm thick) c-axis-aligned crystalline In─S─O channel material processed from aqueous solution is reported. The 2D In─S─O transistors based on Si/SiO2 substrates exhibit high mobility (µ) of 22.15 cm2 V−1 s−1, on/off current ratio (Ion/Ioff) of ≈107, and good bias stress stability. Detailed investigations show that this achievement is attributed to the highly c-axis-aligned crystalline structure, well-designed In─S─O channel material, and atomically smooth surface. Furthermore, the 2D In─S─O channel is integrated with an aqueous sol-gel-derived 6 nm thick high-k ZrO2 insulator. The all-aqueous-solution-based quasi-2D In─S─O/ZrO2 devices show high µ of 15.65 cm2 V─1 s─1, Ion/Ioff of ≈106, and low operating voltage of 1.5 V. This 2D c-axis-aligned crystalline wide-bandgap oxide semiconductor channel material opens tremendous opportunities for multifunctional, ultra-scaled and low-cost electronics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用水溶液加工的二维 C 轴对齐晶体 In─S─O 晶体管
人们越来越有兴趣探索纳米级超薄二维氧化物半导体晶体管,用于未来规模化和多功能(如超柔性和高透明度)器件。然而,由于纳米级超薄二维氧化物半导体沟道会降低器件性能,并且需要使用昂贵的真空技术,因此阻碍了进一步的发展。本文报告了由水溶液加工而成的二维(2.7 纳米厚)c 轴对齐晶体 In─S─O 沟道材料。基于 Si/SiO2 衬底的二维 In─S─O 晶体管具有 22.15 cm2 V-1 s-1 的高迁移率 (µ)、≈107 的导通/关断电流比 (Ion/Ioff),以及良好的偏压稳定性。详细研究表明,这一成就归功于高度 c 轴对齐的晶体结构、精心设计的 In─S─O 沟道材料和原子级光滑表面。此外,二维 In─S─O 沟道还与水溶胶凝胶衍生的 6 纳米厚的高 K ZrO2 绝缘体集成在一起。基于全水溶胶的准二维 In─S─O/ZrO2 器件显示出 15.65 cm2 V─1 s─1 的高 µ 值、≈106 的离子/离子关和 1.5 V 的低工作电压。这种二维 c 轴对齐结晶宽带隙氧化物半导体沟道材料为多功能、超大规模和低成本电子产品带来了巨大商机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Performance and Energy-Efficient Sub-5 nm 2D Double-Gate MOSFETs Based on Silicon Arsenide Monolayers AI-Assisted Bioelectronics for Personalized Health Management Concurrent Sensing and Communications Based on Intelligent Metasurfaces Pinch-Off Mechanism of High-Gain Organic Transistors with Field Plates: Statistical Analysis, Device Simulations and Compact Modeling Robust C–V Ratio Technique for Profiling Defects in Proton‐Irradiated 4H‐SiC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1