Single-Atom Catalyst Induced Amorphous Li2O2 Layer Enduring Lithium–Oxygen Batteries with High Capacity

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-30 DOI:10.1002/adfm.202410091
Zeinab Mohamed, Quan Zhou, Kefu Zhu, Guoliang Zhang, Wenjie Xu, Peter Joseph Chimtali, Yuyang Cao, HanChen Xu, Ziwei Yan, Yixiu Wang, Hassan Akhtar, Aad Al-Mahgari, Xiaojun Wu, Changda Wang, Li Song
{"title":"Single-Atom Catalyst Induced Amorphous Li2O2 Layer Enduring Lithium–Oxygen Batteries with High Capacity","authors":"Zeinab Mohamed, Quan Zhou, Kefu Zhu, Guoliang Zhang, Wenjie Xu, Peter Joseph Chimtali, Yuyang Cao, HanChen Xu, Ziwei Yan, Yixiu Wang, Hassan Akhtar, Aad Al-Mahgari, Xiaojun Wu, Changda Wang, Li Song","doi":"10.1002/adfm.202410091","DOIUrl":null,"url":null,"abstract":"Aprotic lithium–oxygen batteries (LOBs) may deliver exceptionally high energy density but struggle to attain rapid reversibility and substantial capacity simultaneously, due to typical surface or solution-formed insulating solid Li<sub>2</sub>O<sub>2</sub>. Tuning the structure of Li<sub>2</sub>O<sub>2</sub> to create a large-area amorphous layer on the cathode is predicted to overcome the multiperformance limitations. Here, an isolated nickel single atom to nitrogen-doped graphene as a cathode catalyst (Ni─NG SAC) for LOBs is presented via a green click-trapping strategy. Derived from the maximized exposure of atomic active sites of the cathode, the formation/decomposition mechanisms of Li<sub>2</sub>O<sub>2</sub> are tailored, and a large area of thin Li<sub>2</sub>O<sub>2</sub> amorphous film is achieved. The structure and functions of Ni─NG SAC are explored by theoretical computation and synchrotron radiational investigation. Consequently, the abundant Ni─N<sub>4</sub> sites enhance redox kinetics and stand out to deliver an impressive specific discharge/charge capacity of 24 248/17 656 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>, together with a long cycle life of over 500 cycles. This study contributes helpful insights to achieve high-capacity LOBs with long lifespans, by constructing unique single-atom catalysts to optimize the formation of amorphous discharge Li<sub>2</sub>O<sub>2</sub> products.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410091","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aprotic lithium–oxygen batteries (LOBs) may deliver exceptionally high energy density but struggle to attain rapid reversibility and substantial capacity simultaneously, due to typical surface or solution-formed insulating solid Li2O2. Tuning the structure of Li2O2 to create a large-area amorphous layer on the cathode is predicted to overcome the multiperformance limitations. Here, an isolated nickel single atom to nitrogen-doped graphene as a cathode catalyst (Ni─NG SAC) for LOBs is presented via a green click-trapping strategy. Derived from the maximized exposure of atomic active sites of the cathode, the formation/decomposition mechanisms of Li2O2 are tailored, and a large area of thin Li2O2 amorphous film is achieved. The structure and functions of Ni─NG SAC are explored by theoretical computation and synchrotron radiational investigation. Consequently, the abundant Ni─N4 sites enhance redox kinetics and stand out to deliver an impressive specific discharge/charge capacity of 24 248/17 656 mAh g−1 at 200 mA g−1, together with a long cycle life of over 500 cycles. This study contributes helpful insights to achieve high-capacity LOBs with long lifespans, by constructing unique single-atom catalysts to optimize the formation of amorphous discharge Li2O2 products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单原子催化剂诱导的非晶态氧化锂层可承受高容量锂-氧电池
无电解质锂-氧电池(LOBs)可提供极高的能量密度,但由于典型的表面或溶液形成的绝缘固体氧化锂(Li2O2),很难同时实现快速可逆性和高容量。通过调整 Li2O2 的结构,在阴极上形成大面积非晶层,有望克服多性能限制。在此,我们通过一种绿色点击捕获策略,介绍了一种隔离镍单原子到掺氮石墨烯的阴极催化剂(Ni─NG SAC)。通过最大限度地暴露阴极原子活性位点,定制了 Li2O2 的形成/分解机制,并获得了大面积的非晶态 Li2O2 薄膜。通过理论计算和同步辐射研究,探索了 Ni─NG SAC 的结构和功能。结果表明,丰富的 Ni─N4 位点增强了氧化还原动力学,并在 200 mA g-1 的条件下实现了 24 248/17 656 mAh g-1 的惊人比放电/充电容量,以及超过 500 次的长循环寿命。这项研究通过构建独特的单原子催化剂来优化非晶态放电锂二氧化物产品的形成,为实现长寿命的高容量 LOB 提供了有益的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1