Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-09-04 DOI:10.1016/j.matt.2024.06.047
{"title":"Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells","authors":"","doi":"10.1016/j.matt.2024.06.047","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their superior thermal stability, inorganic perovskites, especially CsPbI<sub>3</sub>, possess great application prospects. However, non-radiative recombination energy dissipation caused by defect states has always been a technical bottleneck restricting the development of perovskite solar cells. Herein, graphdiyne (GDY)<em>,</em> an <em>sp</em>-hybridized carbon framework, has been introduced to manipulate the CsPbI<sub>3</sub> perovskite crystal lattice. On the one hand, GDY serves as a Lewis base, thereby regulating the perovskite crystallization process and leading to high-quality thin film with low-defect state density. On the other hand, the GDY molecule at grain boundaries relieves the inevitable crystal lattice stress within the CsPbI<sub>3</sub> perovskite film caused by the high thermal annealing temperature. As a result, a record-high fill factor of 83.96% and an ultra-high open-circuit voltage of 1.191 V for β-phase CsPbI<sub>3</sub> perovskite solar cells are achieved simultaneously. This work provides a proficient methodology to manipulate the crystal lattice of inorganic perovskites toward high-performance photovoltaics.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their superior thermal stability, inorganic perovskites, especially CsPbI3, possess great application prospects. However, non-radiative recombination energy dissipation caused by defect states has always been a technical bottleneck restricting the development of perovskite solar cells. Herein, graphdiyne (GDY), an sp-hybridized carbon framework, has been introduced to manipulate the CsPbI3 perovskite crystal lattice. On the one hand, GDY serves as a Lewis base, thereby regulating the perovskite crystallization process and leading to high-quality thin film with low-defect state density. On the other hand, the GDY molecule at grain boundaries relieves the inevitable crystal lattice stress within the CsPbI3 perovskite film caused by the high thermal annealing temperature. As a result, a record-high fill factor of 83.96% and an ultra-high open-circuit voltage of 1.191 V for β-phase CsPbI3 perovskite solar cells are achieved simultaneously. This work provides a proficient methodology to manipulate the crystal lattice of inorganic perovskites toward high-performance photovoltaics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过杂化碳实现晶格操作,突破 β-CsPbI3 包晶太阳能电池填充因子的极限
无机过氧化物,尤其是 CsPbI3,因其卓越的热稳定性而具有广阔的应用前景。然而,缺陷态引起的非辐射重组能量耗散一直是制约包晶太阳能电池发展的技术瓶颈。在此,我们引入了一种sp杂化碳框架--graphdiyne(GDY)来操纵CsPbI3透辉石晶格。一方面,GDY 可作为路易斯碱,从而调节透辉石的结晶过程,形成具有低缺陷态密度的高质量薄膜。另一方面,晶界上的 GDY 分子可以缓解 CsPbI3 包晶体薄膜内因热退火温度过高而产生的不可避免的晶格应力。因此,β 相 CsPbI3 包晶太阳能电池的填充因子达到了创纪录的 83.96%,开路电压达到了 1.191 V。这项工作为操纵无机包晶的晶格以实现高性能光伏技术提供了一种熟练的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories Integration of kinks and creases enables tunable folding in meta-ribbons Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1