{"title":"Home Air Quality Monitoring System","authors":"K. S. Kumari","doi":"10.22214/ijraset.2024.63566","DOIUrl":null,"url":null,"abstract":"Abstract: The quality of indoor air is a critical determinant of health and well-being, particularly Given the considerable amount of time individuals invest indoors. Recognizing the pivotal role of air quality, this paper introduces a novel Home Air Quality Monitoring System (HAQMS) designed to provide real-time, accurate assessments of air quality within residential environments. The HAQMS integrates advanced sensors and IoT (Internet of Things) technologies to detect and quantify a wide range of air pollutants, including particulate matter (PM2.5 and PM10), volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), and ozone (O3).The system architecture is delineated into three primary components: the sensor array for pollutant detection, a data processing unit employing advanced algorithms for real-time data analysis, and a user interface for displaying air quality metrics and providing health recommendations. Utilizing machine learning techniques, the system not only reports currentair quality but also predicts future air quality levels based on historical data and trend analysis. This predictive feature is pivotal for proactive measures in maintaining indoor air quality.","PeriodicalId":13718,"journal":{"name":"International Journal for Research in Applied Science and Engineering Technology","volume":"25 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Research in Applied Science and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2024.63566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The quality of indoor air is a critical determinant of health and well-being, particularly Given the considerable amount of time individuals invest indoors. Recognizing the pivotal role of air quality, this paper introduces a novel Home Air Quality Monitoring System (HAQMS) designed to provide real-time, accurate assessments of air quality within residential environments. The HAQMS integrates advanced sensors and IoT (Internet of Things) technologies to detect and quantify a wide range of air pollutants, including particulate matter (PM2.5 and PM10), volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), and ozone (O3).The system architecture is delineated into three primary components: the sensor array for pollutant detection, a data processing unit employing advanced algorithms for real-time data analysis, and a user interface for displaying air quality metrics and providing health recommendations. Utilizing machine learning techniques, the system not only reports currentair quality but also predicts future air quality levels based on historical data and trend analysis. This predictive feature is pivotal for proactive measures in maintaining indoor air quality.