Secure Noise Sampling for DP in MPC with Finite Precision

Hannah Keller, Helen Möllering, Thomas Schneider, Oleksandr Tkachenko, Liang Zhao
{"title":"Secure Noise Sampling for DP in MPC with Finite Precision","authors":"Hannah Keller, Helen Möllering, Thomas Schneider, Oleksandr Tkachenko, Liang Zhao","doi":"10.1145/3664476.3664490","DOIUrl":null,"url":null,"abstract":"While secure multi-party computation (MPC) protects the privacy of inputs and intermediate values of a computation, differential privacy (DP) ensures that the output itself does not reveal too much about individual inputs. For this purpose, MPC can be used to generate noise and add this noise to the output. However, securely generating and adding this noise is a challenge considering real-world implementations on finite-precision computers, since many DP mechanisms guarantee privacy only when noise is sampled from continuous distributions requiring infinite precision. We introduce efficient MPC protocols that securely realize noise sampling for several plaintext DP mechanisms that are secure against existing precision-based attacks: the discrete Laplace and Gaussian mechanisms, the snapping mechanism, and the integer-scaling Laplace and Gaussian mechanisms. Due to their inherent trade-offs, the favorable mechanism for a specific application depends on the available computation resources, type of function evaluated, and desired ( 𝜖,𝛿 ) -DP guarantee. The benchmarks of our protocols implemented in the state-of-the-art MPC framework MOTION (Braun et al., TOPS’22) demonstrate highly efficient online runtimes of less than 32 ms/query and down to about 1ms/query with batching in the two-party setting. Also the respective offline phases are practical, requiring only 51 ms to 5.6 seconds/query depending on the batch size.","PeriodicalId":256404,"journal":{"name":"IACR Cryptology ePrint Archive","volume":"10 21","pages":"25:1-25:12"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptology ePrint Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3664476.3664490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While secure multi-party computation (MPC) protects the privacy of inputs and intermediate values of a computation, differential privacy (DP) ensures that the output itself does not reveal too much about individual inputs. For this purpose, MPC can be used to generate noise and add this noise to the output. However, securely generating and adding this noise is a challenge considering real-world implementations on finite-precision computers, since many DP mechanisms guarantee privacy only when noise is sampled from continuous distributions requiring infinite precision. We introduce efficient MPC protocols that securely realize noise sampling for several plaintext DP mechanisms that are secure against existing precision-based attacks: the discrete Laplace and Gaussian mechanisms, the snapping mechanism, and the integer-scaling Laplace and Gaussian mechanisms. Due to their inherent trade-offs, the favorable mechanism for a specific application depends on the available computation resources, type of function evaluated, and desired ( 𝜖,𝛿 ) -DP guarantee. The benchmarks of our protocols implemented in the state-of-the-art MPC framework MOTION (Braun et al., TOPS’22) demonstrate highly efficient online runtimes of less than 32 ms/query and down to about 1ms/query with batching in the two-party setting. Also the respective offline phases are practical, requiring only 51 ms to 5.6 seconds/query depending on the batch size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在精度有限的 MPC 中对 DP 进行安全噪声采样
安全多方计算(MPC)可保护输入和计算中间值的隐私,而差分隐私(DP)则可确保输出本身不会泄露太多关于单个输入的信息。为此,MPC 可用于生成噪声并将噪声添加到输出中。然而,考虑到在有限精度计算机上的实际应用,安全地生成和添加这种噪声是一项挑战,因为许多 DP 机制只有在从需要无限精度的连续分布中采样噪声时才能保证隐私。我们介绍了高效的 MPC 协议,可安全地实现几种明文 DP 机制的噪声采样,这些机制可安全地抵御现有的基于精度的攻击:离散拉普拉斯和高斯机制、抢断机制以及整数缩放拉普拉斯和高斯机制。由于其内在的权衡,针对特定应用的有利机制取决于可用的计算资源、评估函数的类型以及所需的 ( 𝜖,𝛿 ) -DP 保证。在最先进的 MPC 框架 MOTION(Braun 等人,TOPS'22)中实施的我们协议的基准测试表明,在双方设置的情况下,高效的在线运行时间小于 32 毫秒/查询,在批处理的情况下,可降至约 1 毫秒/查询。此外,相应的离线阶段也很实用,根据批量大小,每次查询只需 51 毫秒至 5.6 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Noise Sampling for DP in MPC with Finite Precision IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON Understanding User-Perceived Security Risks and Mitigation Strategies in the Web3 Ecosystem Fastcrypto: Pioneering Cryptography Via Continuous Benchmarking Simulation Extractable Versions of Groth's zk-SNARK Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1