{"title":"Critical performance evaluation of periwinkle and eggshells in drilling fluid rheology","authors":"Ndubuisi Elizabeth, Chinyerem, Emmanuel-Mamud, Eunice Ebubechukwu, Iloke Emeka","doi":"10.30574/wjaets.2024.12.2.0306","DOIUrl":null,"url":null,"abstract":"The environmental impact of conventional drilling fluids necessitates exploring sustainable alternatives. This study investigates the potential of readily available eggshell and non-activated periwinkle shell powders as substitutes for Xanthan gum (XCD); a common fluid loss reducer in water-based drilling fluids. The study evaluates their effectiveness in reducing fluid loss, analyzes their physical and rheological properties, and offers insights into their potential advantages and limitations. Eggshell exhibited promising results, achieving comparable fluid loss control to Xanthan gum at an optimal concentration of 4g. non-activated periwinkle shell, while showing some effectiveness, required further investigation for optimal dosage or formulation to compete with Xanthan gum’s performance. Both shells had lower mud weight than Xanthan gum, potentially beneficial for specific scenarios, but their significantly lower viscosity and gel strength raise concerns about hole cleaning and cuttings suspension. This suggests their potential for low-pressure environments or situations where minimizing formation damage is crucial. Further research on dosage optimization, long-term stability, formation compatibility, cost-effectiveness, and environmental impact is recommended to fully assess the viability of these shell powders as sustainable fluid loss reducers for water-based drilling fluids. The promising initial findings pave the way for further exploration and development of this eco-friendly alternative, contributing to a more sustainable drilling industry.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"10 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.12.2.0306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental impact of conventional drilling fluids necessitates exploring sustainable alternatives. This study investigates the potential of readily available eggshell and non-activated periwinkle shell powders as substitutes for Xanthan gum (XCD); a common fluid loss reducer in water-based drilling fluids. The study evaluates their effectiveness in reducing fluid loss, analyzes their physical and rheological properties, and offers insights into their potential advantages and limitations. Eggshell exhibited promising results, achieving comparable fluid loss control to Xanthan gum at an optimal concentration of 4g. non-activated periwinkle shell, while showing some effectiveness, required further investigation for optimal dosage or formulation to compete with Xanthan gum’s performance. Both shells had lower mud weight than Xanthan gum, potentially beneficial for specific scenarios, but their significantly lower viscosity and gel strength raise concerns about hole cleaning and cuttings suspension. This suggests their potential for low-pressure environments or situations where minimizing formation damage is crucial. Further research on dosage optimization, long-term stability, formation compatibility, cost-effectiveness, and environmental impact is recommended to fully assess the viability of these shell powders as sustainable fluid loss reducers for water-based drilling fluids. The promising initial findings pave the way for further exploration and development of this eco-friendly alternative, contributing to a more sustainable drilling industry.