Optimization of solar energy using artificial neural network controller with dc-dc boost, cuk, and single-ended primary inductor converter (SEPIC) converters

Kasim Ali, Mohammad, Sarhan M. Musa
{"title":"Optimization of solar energy using artificial neural network controller with dc-dc boost, cuk, and single-ended primary inductor converter (SEPIC) converters","authors":"Kasim Ali, Mohammad, Sarhan M. Musa","doi":"10.30574/wjaets.2024.12.2.0303","DOIUrl":null,"url":null,"abstract":"The challenge of the greenhouse effect today is to find ways to prevent CO2 emissions, as this harmful gas causes global negative changes. One eco-friendly energy source is solar power, which uses a solar array system composed of various components. A critical part of this system is the Maximum Power Point Tracker (MPPT), which ensures optimal power generation. The MPPT's signal is sent to an Insulated Gate Bipolar Transistor (IGBT) via a Pulse Width Modulator (PWM), adjusting the system's resistance. Traditional controllers used the Perturbation and Observation (P&O) algorithm, which struggled with rapid environmental changes. The new AI-based Artificial Neural Network (ANN) controller improves efficiency by instantly adapting to changes. This work compares the ANN controller with the use of three data sets of 104, 201, and 1001 with three DC-DC converters: Boost, Cuk, and Single-Ended Primary Inductor Converter (SEPIC) converters.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.12.2.0303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of the greenhouse effect today is to find ways to prevent CO2 emissions, as this harmful gas causes global negative changes. One eco-friendly energy source is solar power, which uses a solar array system composed of various components. A critical part of this system is the Maximum Power Point Tracker (MPPT), which ensures optimal power generation. The MPPT's signal is sent to an Insulated Gate Bipolar Transistor (IGBT) via a Pulse Width Modulator (PWM), adjusting the system's resistance. Traditional controllers used the Perturbation and Observation (P&O) algorithm, which struggled with rapid environmental changes. The new AI-based Artificial Neural Network (ANN) controller improves efficiency by instantly adapting to changes. This work compares the ANN controller with the use of three data sets of 104, 201, and 1001 with three DC-DC converters: Boost, Cuk, and Single-Ended Primary Inductor Converter (SEPIC) converters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络控制器与直流-直流升压、CUK 和单端初级电感转换器 (SEPIC) 对太阳能进行优化
当今温室效应面临的挑战是找到防止二氧化碳排放的方法,因为这种有害气体会造成全球负面变化。太阳能是一种环保能源,它使用由各种组件组成的太阳能电池阵列系统。该系统的一个关键部分是最大功率点跟踪器(MPPT),它能确保最佳发电效果。MPPT 的信号通过脉宽调制器 (PWM) 发送到绝缘栅双极晶体管 (IGBT),从而调节系统的电阻。传统控制器使用 "扰动和观测"(P&O)算法,这种算法难以应对快速的环境变化。新的基于人工智能的人工神经网络(ANN)控制器能够即时适应变化,从而提高效率。这项研究利用 104、201 和 1001 三个数据集,对三种直流-直流转换器的 ANN 控制器进行了比较:升压、Cuk 和单端初级电感转换器 (SEPIC) 转换器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of an innovative Eéducationnel practice in Greek students: The flipped learning Optimization of solar energy using recurrent neural network controller with dc-dc boost, Cuk, and single-ended primary inductor converter (SEPIC) Converters Fungal species associated with the surface of selected green leafy vegetables from Bwari market, Abuja - Nigeria: implications on consumer health Comprehensive analysis of gold and silver trading patterns and future projections Policy approaches for bioenergy development in response to climate change: A conceptual analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1