Artificial intelligence and electrocardiography: A modern approach to heart rate monitoring

Joseph Nnaemeka Chukwunweike, Samakinwa Michael, Martin Ifeanyi Mbamalu MNSE, Chinonso Emeh
{"title":"Artificial intelligence and electrocardiography: A modern approach to heart rate monitoring","authors":"Joseph Nnaemeka Chukwunweike, Samakinwa Michael, Martin Ifeanyi Mbamalu MNSE, Chinonso Emeh","doi":"10.30574/wjarr.2024.23.1.2162","DOIUrl":null,"url":null,"abstract":"The integration of Artificial Intelligence (AI) in Electrocardiography (ECG) and Photoplethysmography (PPG) signifies AI's profound influence on heart rate monitoring and analysis. ECG traditionally offers critical insights into cardiac health, necessitating expert interpretation. This study introduces an AI framework with Fast Fourier Transformation Analysis for swift, human-like interpretation of complex ECG signals. A multilayer AI Network accurately detects intricate features, enhancing ECG analysis precision. Leveraging comprehensive datasets, AI models proficiently identify heart dysfunctions like atrial fibrillation and hypertrophic cardiomyopathy, and can estimate age, sex, and race. The proliferation of mobile ECG technologies has spurred AI-based ECG phenotyping, impacting clinical and population health. This research explores AI's role in enhancing cardiac health assessment and clinical decision-making using MATLAB, acknowledging its transformative potential and inherent limitations.","PeriodicalId":23739,"journal":{"name":"World Journal of Advanced Research and Reviews","volume":"7 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Research and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjarr.2024.23.1.2162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Artificial Intelligence (AI) in Electrocardiography (ECG) and Photoplethysmography (PPG) signifies AI's profound influence on heart rate monitoring and analysis. ECG traditionally offers critical insights into cardiac health, necessitating expert interpretation. This study introduces an AI framework with Fast Fourier Transformation Analysis for swift, human-like interpretation of complex ECG signals. A multilayer AI Network accurately detects intricate features, enhancing ECG analysis precision. Leveraging comprehensive datasets, AI models proficiently identify heart dysfunctions like atrial fibrillation and hypertrophic cardiomyopathy, and can estimate age, sex, and race. The proliferation of mobile ECG technologies has spurred AI-based ECG phenotyping, impacting clinical and population health. This research explores AI's role in enhancing cardiac health assessment and clinical decision-making using MATLAB, acknowledging its transformative potential and inherent limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能与心电图:心率监测的现代方法
人工智能(AI)与心电图(ECG)和血压计(PPG)的结合标志着人工智能对心率监测和分析的深远影响。传统上,心电图可提供有关心脏健康的重要信息,需要专家进行解读。本研究采用快速傅立叶变换分析的人工智能框架,对复杂的心电图信号进行类似人类的快速解读。多层人工智能网络可准确检测复杂的特征,提高心电图分析的精确度。利用综合数据集,人工智能模型能熟练识别心房颤动和肥厚型心肌病等心脏功能障碍,并能估计年龄、性别和种族。移动心电图技术的普及促进了基于人工智能的心电图表型分析,对临床和人口健康产生了影响。本研究利用 MATLAB 探索人工智能在增强心脏健康评估和临床决策方面的作用,同时承认其变革潜力和固有局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The relationship between income from fish farming and pupil’s retention in primary schools in Amolator district, Uganda A GIS-based land suitability assessment of wheat production in Kano using selected physical parameters Nanotechnology applications in breast implant manufacturing for improved durability and functionality Challenges and perspectives of total hip arthroplasty in young adults: A study of 74 patients The influence of the workplace environment on the behavior of health workers who breastfeed in Kupang Regency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1