Impact of Dimethylformamide, Tetrahydrofuran, and Dimethyl Sulfoxide on Bulk Heterojunction Organic Solar Cells’ Efficiency and Environmental Footprint
Fernando Rodríguez-Mas, David Valiente, Pablo Corral, José Luis Alonso, Susana Fernández de Ávila
{"title":"Impact of Dimethylformamide, Tetrahydrofuran, and Dimethyl Sulfoxide on Bulk Heterojunction Organic Solar Cells’ Efficiency and Environmental Footprint","authors":"Fernando Rodríguez-Mas, David Valiente, Pablo Corral, José Luis Alonso, Susana Fernández de Ávila","doi":"10.1002/aesr.202400193","DOIUrl":null,"url":null,"abstract":"<p>Organic solar cells (OSCs), especially those employing bulk heterojunction architecture, present a promising avenue in renewable energy technology. These devices utilize organic materials and can be doped by solvents such as dimethylformamide (DMF), tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO). Solvent doping (DMF, THF, and DMSO) is observed to augment the efficiency of OSCs. However, a trade-off exists between the volume of solvent used and the device's efficiency. The judicious selection of solvents is crucial as it directly impacts the environmental footprint of the fabrication process and the power conversion efficiency. Notably, the use of solvents in OSC fabrication contributes to reducing the environmental impact across various categories, in particular Abiotic Depletion, Global Warming, and Human Toxicity. Among the solvents studied, THF demonstrates the most significant reduction in environmental impact. Therefore, optimizing the choice and volume of solvents in OSC fabrication is paramount for achieving both enhanced device performance and minimal environmental footprint.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Organic solar cells (OSCs), especially those employing bulk heterojunction architecture, present a promising avenue in renewable energy technology. These devices utilize organic materials and can be doped by solvents such as dimethylformamide (DMF), tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO). Solvent doping (DMF, THF, and DMSO) is observed to augment the efficiency of OSCs. However, a trade-off exists between the volume of solvent used and the device's efficiency. The judicious selection of solvents is crucial as it directly impacts the environmental footprint of the fabrication process and the power conversion efficiency. Notably, the use of solvents in OSC fabrication contributes to reducing the environmental impact across various categories, in particular Abiotic Depletion, Global Warming, and Human Toxicity. Among the solvents studied, THF demonstrates the most significant reduction in environmental impact. Therefore, optimizing the choice and volume of solvents in OSC fabrication is paramount for achieving both enhanced device performance and minimal environmental footprint.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).