Horizontal Hysteretic Behavior of Circular Concrete-Filled Steel Tubular Columns with Ultra-Large Diameter-to-Thickness Ratios

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2024-07-26 DOI:10.3390/buildings14082313
Jun Wei, Bo Hu, Zhenshan Wang, Hao Meng
{"title":"Horizontal Hysteretic Behavior of Circular Concrete-Filled Steel Tubular Columns with Ultra-Large Diameter-to-Thickness Ratios","authors":"Jun Wei, Bo Hu, Zhenshan Wang, Hao Meng","doi":"10.3390/buildings14082313","DOIUrl":null,"url":null,"abstract":"Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled steel tubular columns with ultra-large diameter-to-thickness ratios, and there is also a lack of relevant experimental research on them. In this study, horizontal hysteresis tests were conducted on concrete columns with a large diameter-to-thickness ratio. The seismic performances of regular and straight-ribbed specimens were analyzed and compared, including the analyses of load-displacement hysteresis curves, strain distribution, skeleton curves, ductility, and energy dissipation capacity. Using these results, a restoring force model for concrete columns with a large diameter-to-thickness ratio was established. The findings indicate that under horizontal loading, the ductility of concrete columns with a regular thin-walled steel tube is 3.9, with an equivalent viscous damping coefficient of 1.65. Meanwhile, the ultimate bearing capacity is 201 kN. After adding stiffening ribs, the ultimate bearing capacity reaches 266 kN and the ductility coefficient reaches 4.4, resulting in the stiffeners increasing the ultimate bearing capacity and ductility by >30% and 12.8%, respectively. However, they have a less pronounced effect on deformation and energy dissipation. Building on these research outcomes, we propose a dimensionless three-line skeleton curve model and a restoring force model. The calculation results from these models align well with the test results, offering valuable insights for the seismic safety analysis of real-world engineering structures.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled steel tubular columns with ultra-large diameter-to-thickness ratios, and there is also a lack of relevant experimental research on them. In this study, horizontal hysteresis tests were conducted on concrete columns with a large diameter-to-thickness ratio. The seismic performances of regular and straight-ribbed specimens were analyzed and compared, including the analyses of load-displacement hysteresis curves, strain distribution, skeleton curves, ductility, and energy dissipation capacity. Using these results, a restoring force model for concrete columns with a large diameter-to-thickness ratio was established. The findings indicate that under horizontal loading, the ductility of concrete columns with a regular thin-walled steel tube is 3.9, with an equivalent viscous damping coefficient of 1.65. Meanwhile, the ultimate bearing capacity is 201 kN. After adding stiffening ribs, the ultimate bearing capacity reaches 266 kN and the ductility coefficient reaches 4.4, resulting in the stiffeners increasing the ultimate bearing capacity and ductility by >30% and 12.8%, respectively. However, they have a less pronounced effect on deformation and energy dissipation. Building on these research outcomes, we propose a dimensionless three-line skeleton curve model and a restoring force model. The calculation results from these models align well with the test results, offering valuable insights for the seismic safety analysis of real-world engineering structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超大直径-厚度比圆形混凝土填充钢管柱的水平滞回行为
薄壁混凝土填充钢管既高效又经济,在民用和轻工业建筑中具有广阔的应用前景。然而,其局部抗弯和变形能力较低,对结构的抗震安全性产生了不利影响。关于超大直径-厚度比的薄壁混凝土填充钢管柱的研究相对较少,也缺乏相关的实验研究。本研究对大直径-厚度比混凝土柱进行了水平滞回试验。分析并比较了规则试件和直肋试件的抗震性能,包括荷载-位移滞后曲线、应变分布、骨架曲线、延性和耗能能力分析。利用这些结果,建立了大直径-厚度比混凝土柱的恢复力模型。研究结果表明,在水平荷载作用下,带有规则薄壁钢管的混凝土柱的延性为 3.9,等效粘性阻尼系数为 1.65。同时,极限承载力为 201 kN。增加加劲肋后,极限承载力达到 266 kN,延性系数达到 4.4,加劲肋使极限承载力和延性分别提高了大于 30% 和 12.8%。然而,加劲件对变形和能量耗散的影响并不明显。在这些研究成果的基础上,我们提出了无量纲三线骨架曲线模型和恢复力模型。这些模型的计算结果与试验结果非常吻合,为实际工程结构的抗震安全分析提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Behavior of Lightweight Self-Compacting Concrete with Recycled Tire Steel Fibers Examination of the Release of Heavy Metals from Self-Hardening Slurries with Fly Ash from Municipal Sewage Sludge Incineration, Considering the Character of Its Operation in a Cut-Off Wall Evaluating the Impact of CO2 on Calcium SulphoAluminate (CSA) Concrete Exploring the Readiness of Organisations to Adopt Artificial Intelligence Impact of Night Ventilation on Indoor Thermal Environment of Residential Buildings under the Dual Carbon Target: A Case Study of Xi’an
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1