A New Grinding Wheel Design with a 3D Internal Cooling Structure System

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-26 DOI:10.3390/jmmp8040159
S. Costa, Paulina Capela, Maria S. Souza, José R. Gomes, L. Carvalho, Mário Pereira, Delfim Soares
{"title":"A New Grinding Wheel Design with a 3D Internal Cooling Structure System","authors":"S. Costa, Paulina Capela, Maria S. Souza, José R. Gomes, L. Carvalho, Mário Pereira, Delfim Soares","doi":"10.3390/jmmp8040159","DOIUrl":null,"url":null,"abstract":"This work discusses challenges in conventional grinding wheels: heat-induced tool wear and workpiece thermal damage. While textured abrasive wheels improve heat dissipation, the current surface-only methods, such as those based on laser and machining, have high renewal costs. The proposed manufacturing technology introduces an innovative 3D cooling channel structure throughout the wheel, enabling various channel geometries for specific abrasive wheel applications. The production steps were designed to accommodate the conventional pressing and sintering phases. During pressing, a 3D organic structure was included in the green body. A drying cycle eliminated all present fluids, and a sintering one burnt away the structure, revealing channels in the final product. Key parameters, such as binder type/content and heating rate, were optimized for reproducibility and scalability. Wear tests showed a huge efficiency increase (>100%) in performance and durability compared of this system to conventional wheels. Hexagonal channel structures decreased the wear rates by 64%, displaying superior wear resistance. Comprehensive CFD simulations evaluated the coolant flow through the cooling channels. This new design methodology for three-dimensionally structured grinding wheels innovates the operation configuration by delivering the coolant directly where it is needed. It allows for increasing the overall efficiency by optimizing cooling, reducing tool wear, and enhancing manufacturing precision. This 3D channel structure eliminates the need for reconditioning, thus lowering the operation costs.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"40 50","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work discusses challenges in conventional grinding wheels: heat-induced tool wear and workpiece thermal damage. While textured abrasive wheels improve heat dissipation, the current surface-only methods, such as those based on laser and machining, have high renewal costs. The proposed manufacturing technology introduces an innovative 3D cooling channel structure throughout the wheel, enabling various channel geometries for specific abrasive wheel applications. The production steps were designed to accommodate the conventional pressing and sintering phases. During pressing, a 3D organic structure was included in the green body. A drying cycle eliminated all present fluids, and a sintering one burnt away the structure, revealing channels in the final product. Key parameters, such as binder type/content and heating rate, were optimized for reproducibility and scalability. Wear tests showed a huge efficiency increase (>100%) in performance and durability compared of this system to conventional wheels. Hexagonal channel structures decreased the wear rates by 64%, displaying superior wear resistance. Comprehensive CFD simulations evaluated the coolant flow through the cooling channels. This new design methodology for three-dimensionally structured grinding wheels innovates the operation configuration by delivering the coolant directly where it is needed. It allows for increasing the overall efficiency by optimizing cooling, reducing tool wear, and enhancing manufacturing precision. This 3D channel structure eliminates the need for reconditioning, thus lowering the operation costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有 3D 内部冷却结构系统的新型砂轮设计
这项工作讨论了传统砂轮所面临的挑战:热引起的工具磨损和工件热损伤。虽然纹理砂轮能改善散热效果,但目前的方法(如基于激光和机械加工的方法)仅限于表面,更新成本较高。拟议的制造技术在整个砂轮中引入了创新的三维冷却通道结构,可针对特定砂轮应用实现各种通道几何形状。生产步骤的设计考虑到了传统的压制和烧结阶段。在压制过程中,在绿色主体中加入了三维有机结构。干燥循环消除了所有存在的液体,烧结循环烧掉了结构,最终产品中的沟槽显露出来。对粘合剂类型/含量和加热速率等关键参数进行了优化,以实现可重复性和可扩展性。磨损测试表明,与传统车轮相比,该系统的性能和耐用性大幅提高(>100%)。六角形通道结构使磨损率降低了 64%,显示出卓越的耐磨性。全面的 CFD 模拟评估了冷却剂流经冷却通道的情况。这种用于三维结构砂轮的新型设计方法通过将冷却剂直接输送到需要的地方,对操作配置进行了创新。它通过优化冷却、减少刀具磨损和提高制造精度来提高整体效率。这种三维通道结构无需进行翻新,从而降低了运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Pseudocapacitive Nanohybrid of Nd-Doped CuGd2O4@Carbon Black as an Efficient Electrode Material for Supercapacitors Enhanced Energy Storage Performance in BNKT-Based Lead-Free Thin Films at Low Electric Fields Synergistic Reinforcement of Dual-Cross-Linked Starch Hydrogels with ZIF-8 and STMP for Enhanced Stability and Electrochemical Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1