{"title":"Solution to SRAM static power consumption with MTCMOS","authors":"Jiyao Yuan, Xiaochuan Xue","doi":"10.54254/2755-2721/78/20240434","DOIUrl":null,"url":null,"abstract":"The rapid growth of mobile devices has led to an increasing demand for battery life and energy efficiency in recent years, the reduction of circuit power consumption has become extremely crucial. SRAM has become an indispensable component of modern System-on-Chip (SoC) designs, and reducing its power consumption holds significant importance in minimizing overall chip power consumption. On the other hand, as manufacturing processes advance, static power consumption resulting from leakage currents has gradually emerged as a primary source of power consumption. This paper analyzes the power composition of SRAM, provides a detailed explanation of the principles and influencing factors of MTCMOS design technology, and conducts modeling analysis on 6T SRAM based on MTCMOS. In the modeling analysis, we compare the leakage current and static power reduction effects of 6T SRAM using four different process technologies: 28nm, 40nm, 65nm, and 90nm. From the data, it can be observed that MTCMOS has a notable effect in reducing leakage current for 6T SRAM across various process technologies. Comparing 6T SRAM of different process technologies, we can roughly see that the power reduction effect reaches a peak and gradually decreases. However, due to the lack of more advanced process libraries, we cannot further validate whether this inference is accurate.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"25 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/78/20240434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of mobile devices has led to an increasing demand for battery life and energy efficiency in recent years, the reduction of circuit power consumption has become extremely crucial. SRAM has become an indispensable component of modern System-on-Chip (SoC) designs, and reducing its power consumption holds significant importance in minimizing overall chip power consumption. On the other hand, as manufacturing processes advance, static power consumption resulting from leakage currents has gradually emerged as a primary source of power consumption. This paper analyzes the power composition of SRAM, provides a detailed explanation of the principles and influencing factors of MTCMOS design technology, and conducts modeling analysis on 6T SRAM based on MTCMOS. In the modeling analysis, we compare the leakage current and static power reduction effects of 6T SRAM using four different process technologies: 28nm, 40nm, 65nm, and 90nm. From the data, it can be observed that MTCMOS has a notable effect in reducing leakage current for 6T SRAM across various process technologies. Comparing 6T SRAM of different process technologies, we can roughly see that the power reduction effect reaches a peak and gradually decreases. However, due to the lack of more advanced process libraries, we cannot further validate whether this inference is accurate.