{"title":"SkipNet: an adaptive neural network equalization algorithm for future passive optical networking","authors":"Stephen L. Murphy;Paul D. Townsend;Cleitus Antony","doi":"10.1364/JOCN.528490","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an original adaptive neural network equalizer (NNE) algorithm named SkipNet, which is suitable for rapid training on a packet-by-packet basis for burst-mode non-linear equalization in upstream PON transmission. SkipNet uses the simple LMS algorithm and avoids complex neural network training algorithms such as backpropagation and mini-batch training. We demonstrate SkipNet on captured continuous mode 100 Gbit/s PAM4 signals using an SOA preamplifier to achieve the challenging 29 dB PON optical loss budget. The adaptive SkipNet equalizer is shown to overcome combinations of severe SOA patterning effects and fiber dispersion impairments to achieve \n<tex>${\\gt}{29}\\;{\\rm dB}$</tex>\n dynamic range back-to-back and \n<tex>${\\gt}{22.9}\\;{\\rm dB}$</tex>\n dynamic range for up to 81.6 ps/nm accumulated dispersion. It can adapt in as little as 250 training symbols to each impairment scenario, which is equivalent to existing FFE/DFE solutions, while matching the non-linear performance of previously proposed static NNE solutions. To the best of our knowledge, SkipNet is the first ever adaptive NNE framework that can realistically be trained and adapted on a packet-by-packet basis and within strict PON packet preamble lengths.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 11","pages":"1082-1092"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712641","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10712641/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an original adaptive neural network equalizer (NNE) algorithm named SkipNet, which is suitable for rapid training on a packet-by-packet basis for burst-mode non-linear equalization in upstream PON transmission. SkipNet uses the simple LMS algorithm and avoids complex neural network training algorithms such as backpropagation and mini-batch training. We demonstrate SkipNet on captured continuous mode 100 Gbit/s PAM4 signals using an SOA preamplifier to achieve the challenging 29 dB PON optical loss budget. The adaptive SkipNet equalizer is shown to overcome combinations of severe SOA patterning effects and fiber dispersion impairments to achieve
${\gt}{29}\;{\rm dB}$
dynamic range back-to-back and
${\gt}{22.9}\;{\rm dB}$
dynamic range for up to 81.6 ps/nm accumulated dispersion. It can adapt in as little as 250 training symbols to each impairment scenario, which is equivalent to existing FFE/DFE solutions, while matching the non-linear performance of previously proposed static NNE solutions. To the best of our knowledge, SkipNet is the first ever adaptive NNE framework that can realistically be trained and adapted on a packet-by-packet basis and within strict PON packet preamble lengths.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.