Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam

Thi Nam Phuong Doan, Le Hung Trinh, V. Zablotskii, Van Trung Nguyen, X. Tran, Thi Thanh Hoa Pham, Thi Thu Ha Le, Van Phu Le
{"title":"Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam","authors":"Thi Nam Phuong Doan, Le Hung Trinh, V. Zablotskii, Van Trung Nguyen, X. Tran, Thi Thanh Hoa Pham, Thi Thu Ha Le, Van Phu Le","doi":"10.31857/s0205961424010012","DOIUrl":null,"url":null,"abstract":"This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.","PeriodicalId":388889,"journal":{"name":"Исследования Земли из космоса","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Исследования Земли из космоса","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0205961424010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遥感和 GIS 技术进行森林火灾风险评估和绘图:越南义安省案例研究
本文介绍了利用遥感和地理信息系统数据建立义安省(越南中北部)西部森林火灾风险模型的结果。利用植被覆盖度(NDVI 植被指数)、地表蒸散量、海拔高度(DEM)、坡度(斜率)、坡向、风速、地表温度、月平均降水量和人口密度等九个影响森林火灾风险的因素,基于随机森林(RF)、支持向量机(SVM)和分类与回归树(CART)等机器学习方法,建立了森林火灾风险绘图模型。对 RF、SVM 和 CART 算法的各种参数进行了测试,以选出森林火灾风险预测准确率最高的算法。结果表明,通过森林火灾点的分布位置以及 ROC 曲线上的 AUC 值,参数 numberOfTrees 值等于 100 的 RF 算法预测研究区域森林火灾风险的准确率最高。研究得出的结果可有效用于监测和预警居民点的森林火灾危险,帮助减少森林火灾造成的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam Application of Earth Remote Sensing Materials to Refine the Localization of Gold Deposits within the Novogodnenskoye Ore Field in the Polar Urals Comparative Analysis of Reforestation Indicators on Abandoned Agricultural Lands in the Central Russian Forest-Steppe Based on Remote Sensing Data The Spatio-Temporal Variability of Sea Surface Temperature of Bering Sea from ERA5 Reanalysis Data Based on Satellite Information Relation of Changes in CO2 Concentration over Large Water Areas of the Boreal and Subarctic Zones of the Northern Hemisphere with Their Phenological Phases Determined from SMOS Satellite Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1