Review on Aging Risk Assessment and Life Prediction Technology of Lithium Energy Storage Batteries

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2024-07-25 DOI:10.3390/en17153668
Zhiwei Liao, Dongze Lv, Qiyun Hu, Xiang Zhang
{"title":"Review on Aging Risk Assessment and Life Prediction Technology of Lithium Energy Storage Batteries","authors":"Zhiwei Liao, Dongze Lv, Qiyun Hu, Xiang Zhang","doi":"10.3390/en17153668","DOIUrl":null,"url":null,"abstract":"In response to the dual carbon policy, the proportion of clean energy power generation is increasing in the power system. Energy storage technology and related industries have also developed rapidly. However, the life-attenuation and safety problems faced by energy storage lithium batteries are becoming more and more serious. In order to clarify the aging evolution process of lithium batteries and solve the optimization problem of energy storage systems, we need to dig deeply into the mechanism of the accelerated aging rate inside and outside the lithium ion from the perspective of the safety and stability of a lithium battery in view of the complex and changeable actual working conditions during the operation of the battery. This paper takes a lithium-iron phosphate battery and a lithium-ion battery as examples to analyze. According to the specific scene of lithium battery operation, the actual operating conditions of lithium battery environmental impact factors and attenuation mechanisms are described in detail. The damage to the internal structure of lithium batteries was systematically analyzed. Furthermore, the correlation between the external influencing factors and the aging rate of lithium batteries under the coupling effect of internal failure mechanisms is analyzed. Finally, future energy storage failure analysis technology is anticipated, hoping to play a positive role in promoting the development of energy storage and lithium battery failure analysis technology.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153668","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the dual carbon policy, the proportion of clean energy power generation is increasing in the power system. Energy storage technology and related industries have also developed rapidly. However, the life-attenuation and safety problems faced by energy storage lithium batteries are becoming more and more serious. In order to clarify the aging evolution process of lithium batteries and solve the optimization problem of energy storage systems, we need to dig deeply into the mechanism of the accelerated aging rate inside and outside the lithium ion from the perspective of the safety and stability of a lithium battery in view of the complex and changeable actual working conditions during the operation of the battery. This paper takes a lithium-iron phosphate battery and a lithium-ion battery as examples to analyze. According to the specific scene of lithium battery operation, the actual operating conditions of lithium battery environmental impact factors and attenuation mechanisms are described in detail. The damage to the internal structure of lithium batteries was systematically analyzed. Furthermore, the correlation between the external influencing factors and the aging rate of lithium batteries under the coupling effect of internal failure mechanisms is analyzed. Finally, future energy storage failure analysis technology is anticipated, hoping to play a positive role in promoting the development of energy storage and lithium battery failure analysis technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂储能电池老化风险评估与寿命预测技术综述
为响应双碳政策,清洁能源发电在电力系统中的比例不断增加。储能技术和相关产业也得到了快速发展。然而,储能锂电池面临的寿命衰减和安全问题也越来越严重。为了厘清锂电池的老化演化过程,解决储能系统的优化问题,需要针对锂电池运行过程中复杂多变的实际工况,从锂电池安全性和稳定性的角度深入挖掘锂离子内外加速老化的机理。本文以磷酸铁锂电池和锂离子电池为例进行分析。根据锂电池运行的具体场景,详细阐述了锂电池实际运行条件下的环境影响因素及衰减机理。系统分析了锂电池内部结构的损伤情况。此外,还分析了在内部失效机制耦合作用下,外部影响因素与锂电池老化率之间的相关性。最后,对未来储能失效分析技术进行了展望,希望对储能和锂电池失效分析技术的发展起到积极的推动作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries Optimal Configuration Method of Primary and Secondary Integrated Intelligent Switches in the Active Distribution Network Considering Comprehensive Fault Observability Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1