Analysis and trend prediction of COVID-19 pandemic data based on big data visualization

Xinyuan Lu
{"title":"Analysis and trend prediction of COVID-19 pandemic data based on big data visualization","authors":"Xinyuan Lu","doi":"10.54254/2755-2721/69/20241513","DOIUrl":null,"url":null,"abstract":"Since the outbreak of COVID-19 at the end of 2019, this global public health crisis has profoundly impacted the socio-economic conditions and daily life of countries worldwide. To effectively combat the pandemic, scientists and public health experts rely on vast amounts of data to track the progression of the disease, evaluate the effectiveness of control measures, and predict future trends. Big data technology plays a crucial role in the analysis of pandemic data and trend forecasting. This paper will explore the methods of analyzing COVID-19 pandemic data and the application of trend forecasting.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"22 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/69/20241513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the outbreak of COVID-19 at the end of 2019, this global public health crisis has profoundly impacted the socio-economic conditions and daily life of countries worldwide. To effectively combat the pandemic, scientists and public health experts rely on vast amounts of data to track the progression of the disease, evaluate the effectiveness of control measures, and predict future trends. Big data technology plays a crucial role in the analysis of pandemic data and trend forecasting. This paper will explore the methods of analyzing COVID-19 pandemic data and the application of trend forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据可视化的 COVID-19 流行病数据分析与趋势预测
自 COVID-19 于 2019 年底爆发以来,这场全球公共卫生危机已深刻影响了世界各国的社会经济状况和日常生活。为了有效应对这一疫情,科学家和公共卫生专家依靠海量数据来追踪疫情进展、评估控制措施的有效性并预测未来趋势。大数据技术在大流行病数据分析和趋势预测方面发挥着至关重要的作用。本文将探讨 COVID-19 大流行数据的分析方法和趋势预测的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on integrating hydrogen energy storage with solar and wind power for Net-Zero energy buildings Design and implementation of scrambling and decoding circuits Research on the life cycle assessment of cement Research on the intelligent fatigue detection of metal components in vehicles Research progress in home energy management systems consideration of comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1